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Networked control systems

Water distributionSmart grids Traffic control

Wireless sensor networks Swarm robotics Communication networks
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Scientific context

pV = nRT

Statistical mechanics 

how the local interactions of 
particles may yield simple 
thermodynamics laws 
describing the global 
behavior.
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Scientific context

Flocking: collective animal behavior given by the motion of a 
large number of coordinated individuals

COOPERATION: Simple global behavior from local interactions
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Scientific context

Graph describing friendship relations in an high school

Social and economic networks: individual social and economic 
interactions produce global phenomena
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Problem description
The object of our investigations is to study the behavior of “complex” systems 
constituted by the interconnection of many units which are themselves dynamical 
systems.

The behavior of these systems will depend on the dynamics of the units and on the 
interconnection topology. We want to understand how these two features produce the 
global dynamics.

A remarkable solution of a question of this type (stability) can be found in 
JA Fax, RM Murray - IEEE Transactions on Automatic Control, 2004 Information flow 
and cooperative control of vehicle formations

+=

http://caltechcdstr.library.caltech.edu/archive/00000027/01/fm03-tac.pdf
http://caltechcdstr.library.caltech.edu/archive/00000027/01/fm03-tac.pdf
http://caltechcdstr.library.caltech.edu/archive/00000027/01/fm03-tac.pdf
http://caltechcdstr.library.caltech.edu/archive/00000027/01/fm03-tac.pdf
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Multi-agent systems architecture for 
distributed estimation

ESTIMATOR

y(s)
x̂

s = space variable
y(s) = spatial data
x̂ = data based decision
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Multi-agent systems architecture for 
distributed estimation

is opinion of the node i has of

x̂i

x̂j

y(s)

yi yj

sensor

sensing link

communication
link

i

j

x̂x̂i
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Multi-agent systems architecture for 
distributed estimation

ESTIMATOR

Advantages: intrinsic robustness and adaptivity due to redundancy

y(s)
x̂

x̂i

x̂1
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Multi-agent systems architecture for 
distributed estimation

ESTIMATOR

t = time
s = space variable
y(s, t) = time-varying spatial data
x̂(t) = time-varying data base decision

x̂(t)
y(s, t)
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Multi-agent systems architecture for 
distributed estimation

y(s, t)u(t)

System

Controller

Controller

ESTIMATOR

y(s, t)
x̂(t)u(t)
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The consensus algorithm

Main idea: Having a set of agents to agree upon a certain value (usually
global function) using only local information exchange (local interaction)

x = f(y1, . . . , yN ) = F

(
1

N

N∑

i=1

Gi(yi)

)

yj

xi is the estimates
of x of the node i

yi

i
j

xi

xj Distributed computation of general 
functions

•Computational efficient (linear & 
asynchronous)

•Independent of graph topology
•Incremental (i.e. anytime)
•Robust to failure
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The consensus algorithm

A distributed algorithm is said to
reach the average consensus if

xi(t) −→
1

N

N∑

i=1

yi

for all i = 1, . . . , N .

A distributed algorithm is said to
reach the consensus if

xi(t) −→ α

for all i = 1, . . . , N .
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The consensus algorithm

, . . . ,

( )

( + ) =
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=

( ) ( ) =
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The consensus algorithm

( + ) = ( )

( ) =

ij

> G

( ) −→
∑

=

µ ( )

µ
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The consensus algorithm

µ = /

( ) −→
∑

=

µ ( )

( , . . . , ) =

(
∑

=

( )
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Some literature (limited to the control field)

Convergence of Markov Chains (60’s) and Parallel Computation Alg.(70’s)

John Tsitsiklis “Problems in Decentralized Decision Making and Computation ”, Ph.D thesis, 1984

Time-varying topologies (deterministic worst-case analysis)
Convergence: Moreau (2005), Jadbabaie, Lin, Morse (2002), Olfati Saber, Murray (2004), Cao, Morse, Anderson 
(2008), . . . .

Randomized consensus
Convergence: Y. Hatano and M. Mesbahi,(2005), Wu (2006), Boyd, Ghosh, Prabhakar, Sha (2006), Alireza Tahbaz-
Salehi, Ali Jadbabaie (2006),

Performance: Boyd, Ghosh, Prabhakar, Sha (2006), Patterson, Bamieh, Abbadi (2007), Fagnani, Zampieri, (2007)

Applications
Vehicle coordination: many contributions 

Distributed Kalman Filtering: Xiao, S. Boyd, and S. Lall. (2005), Olfati Saber (2005), Alighanbari, How (2006), Carli, 
Chiuso, Schenato, Zampieri (2008), Alriksson, Rantzer (2006), Spanos, R. Olfati-Saber, and R. M. Murray.(2005), I.D. 
Schizas, G.B. Giannakis, S. I. Roumeliotis, and A Ribeiro.(2007), A. Speranzon, C. Fischione, and K. Johansson 
(2006)

Generalized means: Bauso, L. Giarre’, and R. Pesenti (2006),Cortes (2008)

Time-synchronization: Solis, Borkar, Kumar (2006), Simeone, Spagnolini (2007),  Carli, Chiuso, Schenato, Zampieri 
(2008), Schenato, Fiorentin (2009)

Sensor and camera network calibration: Barooah, Hespanha (2005) ,Bolognani, DelFavero, Schenato, Varagnolo 
(2008), Tron, Vidal (2009) 
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Some literature on performance metrics

Rate of convergence, mixing rate of a Markov chain, spectral gap and essential 
spectral radius of a stochastic matrix (from the 70’s)

Cayley graphs: Diaconis (1990-2000), Carli, Fagnani, Speranzon, Zampieri (2008).

Random geometric graph: Boyd, Ghosh, Prabhakar, Sha (2006).

Performance Classical literature of Markov chains (Diaconis, Stroock), Xiao, Boyd (2006), B. 
Bamieh, M. Jovanovic, P. Mitra, and S. Patterson. (2010)

L2 performance metrics 

General considerations: Xiao, Boyd, Lall, Diacomis, Kim (2004-2009).

Cayley graphs: Bamieh, Javonovic, Mitra, Patterson (2009), Carli, Z. (2008), Garin, Zampieri 
(2009).

Random geometric graph: Barooah, Hespanha (2004-2009), Carli, Lovisari, Zampieri (2010). 
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The consensus algorithm

Idea for the proof of convergence: 

Convex hull always shrinks.
If communication graph sufficiently connected, then shrinks to a point 
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The consensus algorithm

Idea for the proof of convergence: 

Convex hull always shrinks.
If communication graph sufficiently connected, then shrinks to a point 



5th HYCON2 PhD School

Variations of the consensus algorithm

˙( ) = ( )

− ε

( + ) = ( ) ( )

( + ) = ( ) ( )

( )
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Variations of the consensus algorithm

( ) ∈ R

( + ) = ( ) + ( )
( ) = ( )

( ) =
∑

=

( )

∈ R ×

( ) −→ α
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Variations of the consensus algorithm

( ) ∈ R

( + ) = ( ( )) + ( ( )) ( )
( ) = ( ( ))

( ) =
∑

=

( )

∈ R ×

( ) −→ α
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Example: vehicle formation

( ) = ( ( ), ( ))

( + ) =
∑

=

( )
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Example: distributed estimation

∈ R

= +

ˆ :=
∑

Sensor

Communication link

Sensing link
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Example: distributed least square

x

y
,

( ) =
∑

=

θ ( )

( )
θ

( ) = ( )Θ

( ) = [ ( ) · · · ( )] Θ = [θ · · · θ ]

Θ̂ := argminΘ
∑

=

( − ( )Θ)
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Example: distributed least square

x

y

Θ̂ =

(
∑

=

( ) ( )

)− (
∑

=

( )

)

( ) = ( ) ( ) ∈ R × (∞) =
∑

=

( ) ( )

( ) = ( ) ∈ R (∞) =
∑

=

( )

average 
consensus

average 
consensus
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Example: distributed least square

x

y

Θ̂ =

(
∑

=

( ) ( )

)− (
∑

=

( )

)

( ) = ( ) ( ) ∈ R × (∞) =
∑

=

( ) ( )

( ) = ( ) ∈ R (∞) =
∑

=

( )

average 
consensus

average 
consensus

Initial knowledge
of the node i Final knowledge

of the node i



5th HYCON2 PhD School

Example: distributed least square

x

y

Θ̂ =

(
∑

=

( ) ( )

)− (
∑

=

( )

)

( ) = ( ) ( ) ∈ R × (∞) =
∑

=

( ) ( )

( ) = ( ) ∈ R (∞) =
∑

=

( )

Θ̂ = ( (∞))− (∞)

average 
consensus

average 
consensus

Initial knowledge
of the node i Final knowledge

of the node i
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Example: distributed calibration 

= ( , ) = { , . . . , }
⊆ × ( , ) ( , ) ∈

min
,...,





∑

( , )∈
( , )( − − ( , ))






( , )

min || − ||

| |× | | , ,−
= diag{ : ∈ }
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Example: distributed calibration 

min
|
∑

=
|| − ||

( + ) = ( ) + α
( ) =

= −α α
( ) := − ( )

( + ) = ( )
( ) =

(∞) = − (∞) = −
∑

=
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Example: distributed decision making

( = ) = ( = ) = /

( = | = ) = ( = | = ) =

( = | = ) = ( = | = ) = −

L( , . . . , ) = log
( | , · · · , )

( | , · · · , )
=

∑
( − ) log

−

ˆ = ⇐⇒ L( , . . . , ) >

−
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Pros and cons

Advantages

Disadvantages
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Performance metrics

( + ) = ( )

( ) =
( ) −→

∑

=

µ ( ),
∑

=

µ =

µ /

( ) (∞)



5th HYCON2 PhD School

ρ(P )

Performance metrics

( ) −→
∑

=

µ ( )

(µ , . . . , µ )
µ = /

,

ρ( )

ρ( ) = max
λ∈Λ( )\{ }

|λ|

Λ( )
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Performance metrics
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Performance metrics

ρ( )
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We consider here network topologies coming from wireless sensor networks 
applications, namely the geometric graphs

Network topologies
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Network topologies

R

!

γ

ρ
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Network topologies
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Network topologies

!
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Network topologies
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Network topologies
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Network topologies

γ
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Network topologies

( , )
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Network topologies

( , )
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Network topologies

( , )

ρ = min
{

( , )
( , )

}

( , ) ≤ ( , )
ρ
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In certain cases we need to restrict to lines and grids

Network topologies
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The simplest “geometric” graphs are circles and toruses (no boundary 
effects)

Network topologies
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Rate of convergence

G
G

−
′

/
≤ ρ( ) ≤ −

′′

/

′, ′′

(Boyd, Ghosh, Prabhakar, Sha 2006, Lovisari, Zampieri 2011)
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Rate of convergence
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Rate of convergence
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Rate of convergence
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Rate of convergence

Circle
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Rate of convergence

Torus



5th HYCON2 PhD School

Rate of convergence

Circle and torus
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Rate of convergence

Geometric graph
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Rate of convergence

Random graph
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Rate of convergence

Random graph and circle
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H2 performance

( )

( ) :=

[ ∞∑

=

|| ( )− (∞)||
]

|| · ||
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H2 performance

( + 1) = ( ) + ( )

( ) := lim sup
→∞

1 {|| ( )− ( )11||}

( ) = 1/
∑

( ) ( )
11 1
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Consensus with noise

Circle
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Consensus with noise

Geometric graph
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H2 performance

( ) =
1
tr

∞∑

=0

(
2 − 1

1111

)

=
1 ∑

λ∈Λ( )\{1}

1

1− λ2

11 1
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L2 performance

G
G

′ ≤ ( ) ≤ ′′ =

′ log( ) ≤ ( ) ≤ ′′ log( ) =

′ ≤ ( ) ≤ ′′ ≥

′, ′′
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)

:=
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Electrical network (Doyle, Snell)

:=

/
/
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Electrical network (Doyle, Snell)

:=

R

/
/
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Electrical network (Doyle, Snell)

:=

R

/
/

( ) =
∑

!=
R
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)

/
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Electrical network (Doyle, Snell)

R
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)
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Electrical network (Doyle, Snell)

Current Kirchhoff’s current law

Ohm’s law

Condition to get uniqueness






=
C =
11 = 0

C
/2

[
C 11
11 0

] [

0

]
=

[

0

]

[

0

]
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[
C 11
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Electrical network (Doyle, Snell)

Green function

[

0

]
=

[
C 11
11 0

]−1 [

0

]

C = −

[
− 11
11 0

]−1

=

[
( ) −111

−111 0

]

( ) :=
∞∑

=0

(
− 1

1111

)

= ( )
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Electrical network (Doyle, Snell)

−
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Electrical network (Doyle, Snell)

( ) = tr ( )

= ( )

C = −

[
− 11
11 0

]−1

=

[
( ) −111

−111 0

]

[
C 11
11 0

] [

0

]
=

[

0

] [

0

]
=

[
C 11
11 0

]−1 [

0

]

[
C 11
11 0

]−1

=

[
( ) −111

−111 0

]
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Electrical network (Doyle, Snell)

= −

R = − = ( − )

= ( − ) ( )

= ( − ) ( )( − )

∑

!=
R = tr ( )
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Electrical network (Doyle, Snell)

( ) = tr
∞∑

=

(
−

)

∑

!=
R = tr ( )

( ) =
∑

!=
R( ) :=

∞∑

=0

(
− 1

1111

)
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Example: distributed estimation

∈ R

= +

ˆ :=
∑

Sensor

Communication link

Sensing link
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Example: distributed estimation

( + ) = ( )

( ) =

( ) ! :=
∑

( , ) :=
∑

E[( ( )− ) ]
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Performance in distributed estimation

( , ) = tr =
∑

λ∈Λ( )

λ
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/

ρ( ) =

( , ) = / , ≥

Performance in distributed estimation
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×

=





/ / · · · · · · /
/ / / · · · · · ·

/ / / · · ·

· · · · · · / / /
/ · · · · · · / /





ρ( ) " − −→

Performance in distributed estimation
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8
Performance in distributed estimation

( , )

< /

( , ) = ( ∞, )

,

( , ) ! max

{
, √

}
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Performance in distributed estimation
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Time varying consensus algorithm

( + 1) = ( ) ( )

G ( )

( ) > 0 ,
!

G! := G! ∪ G! +1 ∪ · · · G(!−1) −1

( ) −→ α

( )
( ) −→ 1 ∑

(0)
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Time varying consensus algorithm

( + 1) = ( ) ( )

G ( )

( ) > 0 ,
!

G! := G! ∪ G! +1 ∪ · · · G(!−1) −1

( ) −→ α

( )
( ) −→ 1 ∑

(0)
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Performance of randomized consensus 
algorithms

•Hatano Mesbahi
•Boyd, Ghosh, Prabhakar, Shah
•Tahbaz-Salehi, Jadbabaie
•Porfiri, Stilwell
•Kar, Moura
•Patterson, Bamieh, Abbadi
•Wu
•Fagnani, Zampieri

( ) ( ) > 0
,

( + 1) = ( ) ( )

( ) →

=
∑

µ (0) µ

( − 1) · · · (0) → 11µ

µ := (µ1, . . . , µ )
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Performance of randomized consensus 
algorithms

•Hatano Mesbahi
•Boyd, Ghosh, Prabhakar, Shah
•Tahbaz-Salehi, Jadbabaie
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•Kar, Moura
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( ) ( ) > 0
,

( + 1) = ( ) ( )

( ) →

=
∑

µ (0) µ

( − 1) · · · (0) → 11µ
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xi(t)

xj(t)

ij

Gossip algorithm (Boyd et al. 2006)

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) != ,
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xi(t)

xj(t)

ij

Gossip algorithm (Boyd et al. 2006)

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) != ,
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xi(t)

xj(t)
ij

Gossip algorithm (Boyd et al. 2006)

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) != ,
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i

j

i j  

! 

P(t) =

1
!

1
1/2 1/2

1
!

1
1/2 1/2
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!

1
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$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
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$ 
$ 
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Gossip algorithm (Boyd et al. 2006)
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Asymmetric gossip algorithm

xj(t)

ij

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) !=
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Asymmetric gossip algorithm

xj(t)

ij

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) !=
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Asymmetric gossip algorithm

xj(t)
ij

G
( , ) G

> 0

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( ) !=
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Asymmetric gossip algorithm
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ij

G

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( )

Broadcast communication
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ij

G

( + 1) = 1/2 ( ) + 1/2 ( )

( + 1) = ( )

Broadcast communication
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Consensus with packet drops

Patterson, Bamieh, Abbadi
Fagnani, Zampieri 
Preciado, Tahbaz-Salehi, Jadbabaie

( + 1) =
∑

=1

( )

( ), ∈ N, , = 1, . . . ,

"=
( ) = 0

[ ( ) = 1] = [ ( ) = 0] = 1−

= 1, . . . ,
( ) 1

1
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Consensus with packet drops

( + 1) =
1∑

∈ ( )




∑

∈
( ) ( )





( + 1) = (1− ε
∑

) ( ) + ε
∑

∈ \{ }

( ) ( )
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Performance metrics

( ) =
1 || ( )− 11 ( )||2 =

1 ∑

=1

| ( )− ( )|2

( ) = 1/
∑

( ) ( )

β( ) = | ( )− (0)|2
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Convergence

( ) ( ) > 0
:= E[ ( )]
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Examples

[ ( ) = − 1/2( − )( − ) ] =

= , ∀ #=

G = G
( ) ≥ 1/2
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Examples

( ) ≥ 1/

"= ( , )

= E

[
( )∑

∈ ( )

]

= E

[
( )∑

∈ ( )

∣∣ ( ) = 0

]
P[ ( ) = 0]

+ E

[
( )∑

∈ ( )

∣∣ ( ) = 1

]
P[ ( ) = 1]

= E

[
( )∑

∈ ( )

∣∣ ( ) = 1

]
≥ /| |
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Rate of convergence

( ) ( ) > 0

lim
→∞

1
log || ( )− (∞)|| =

|| ( )− (∞)|| #
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Rate of convergence

¯( ) := E[ ( )]

( ) =
1 || ( )− (∞)||2

( ) ¯( )

( )1/2 # ¯( )1/2 # $=

( )

P[| ( )− ¯( )| ≥ δ] ≤ exp

(
− δ2α( )

|| (0)||4

)

α( ) ( )
α( ) = 2 2/ P[| ( )−¯( )| ≥ δ]

( )1/2 # ¯( )1/2 #
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Mean square analysis

Ω := − 111

E[ ( )] =
1
E[ ( )Ω ( )] =

1
(0)∆( ) (0)

∆( ) := E[ (0) (1) · · · ( − 1) Ω ( − 1) · · · (1) (0)]

∆(0) := Ω

∆( + 1) = L(∆( ))

L : R × → R ×

L( ) = E[ (0) (0)]



5th HYCON2 PhD School






∆( + 1) = L(∆( )) ∆(0) := Ω

E[ ( )] = 1 (0)∆( ) (0)






δ( + 1) = Lδ( )

E[ ( )] = ( (0))δ( )

L := E[ (0)⊗ (0)]

δ( ) = vect(∆( ))

L

Mean square analysis
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E[ ( )]

:= lim
→∞

1
logE[ ( )]

Sym ×

L|Sym

L|Sym

esr
( )2 ≤ ≤ sr(L(Ω)) esr(·)

sr(·)

Mean square analysis
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= 1/ 2

2 = 1− 1

2 = (1− β )(1− β)

β := E
[

1
2+ −2

]

{0, 1, . . . , }
P[ = ] =

( )
(1− ) − = 0, 1, . . . ,

Examples
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Distance of the consensus value from the 
average

β(∞) = | (∞)− (0)|2 = |(µ − −11 ) (0)|2

E[β(∞)] = (0) (0)

E[ ( )]

= E[µµ ]− −211

:= E[µµ ] =
1

lim
→∞

L ( )

L( ) = 1 1 = 1
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Distance of the consensus value from the 
average

β(∞) = | (∞)− (0)|2 = |(µ − −11 ) (0)|2

E[β(∞)] = (0) (0)

= E[µµ ]− 1
E[µ]1 − 1

1E[µ] + −211

= E[µµ ]− −211

:= E[µµ ] =
1

lim
→∞

L ( )

L( ) = 1 1 = 1
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∑

=1

=
∑

=1

L

=
1

( + 1)

(
− 1

11

)

Examples
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=
1
2

1− β

1− β + 1/

(
− 1

11

)

β := E
[

1
2+ −2

]

{0, 1, . . . , } P[ = ] =
( )

(1 − ) − =

0, 1, . . . , 1− β
1−β+1/ ≤ 1

≤ 1
2

(
− 1

11

)

−2 ∞

Examples
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Higher order consensus

( + ) = ( ) + ( )

( ) = ( )

( ) =
∑

=

( ) ( ( )− ( ))
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+ ( )

Higher order consensus

( + ) = ( ) + ( )

( ) = ( )

( ) =
∑

=

( ) ( ( )− ( ))
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+ ( )

Higher order consensus

( + ) = ( ) + ( )

( ) = ( )

( ) =
∑

=

( ) ( ( )− ( ))

( ) ,

| ( )− ( )| → ∀ ,
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Higher order consensus: another 
example

( + ) = β ( ) + ( − β) ( − )

β

( + ) = β ( ) ( ) + ( − β) ( − )
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Higher order consensus: another 
example

( + ) = ( ) + ( )

( ) = ( )

( ) =
∑

=

( ) ( ( )− ( )) + ( )

( ) := − ( )

=

[ ]
, =

[ ]
, =

[ ]

=

[
−β

]
, =

[
− β β −

]
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Clock synchronization

time

time
estimate



5th HYCON2 PhD School

Clock synchronization
clock time profile

time

time
estimate
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Reference time profile

Clock synchronization
clock time profile

time

time
estimate
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Reference time profile

Clock synchronization

time

time
estimate
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Reference time profile

Clock synchronization

clock time profile 
with time corrections

time

time
estimate
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Reference time profile

Clock synchronization

time

time
estimate



5th HYCON2 PhD School

Reference time profile

Clock synchronization

clock time profile 
with time and slope
corrections

time

time
estimate
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Architectures for clock synchronization

root
Master slave architecture
(NTP time-synchronization 

protocol)

j

i



5th HYCON2 PhD School

Leaderless distributed 
architecture

j

i

Architectures for clock synchronization
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Clock synchronization

Clock synchronization with no reference time

x2(t)

x3(t)

x1(t)

( )
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Mathematical description of a clock

∆
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Mathematical description of a clock

We neglect the 
clock quantization ( ) =

−
∆

+ ( )

∆

si(t)

t
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Mathematical description of a clock

We neglect the 
clock quantization ( ) =

−
∆

+ ( )

( ) = ( ) + ∆̂ ( ( )− ( ))

∆̂ ∆

∆

si(t)

t
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Mathematical description of a clock

We neglect the 
clock quantization 

∆̂ ( )
We can have time 
dependent estimation 
of the oscillator period

( ) =
−
∆

+ ( )

( ) = ( ) + ∆̂ ( ( )− ( ))

∆̂ ∆

∆

si(t)

t
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Mathematical description of a clock

We neglect the 
clock quantization 

∆̂ ( )
We can have time 
dependent estimation 
of the oscillator period

= ( ) + ∆̂
−
∆

( ) =
−
∆

+ ( )

( ) = ( ) + ∆̂ ( ( )− ( ))

∆̂ ∆

∆

si(t)

t
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Mathematical description of a clock

si(t)

t

We neglect the 
clock quantization 

= ( ) + ∆̂
−
∆

( ) =
−
∆

+ ( )

( ) = ( ) + ∆̂ ( ( )− ( ))

∆

yi(t)

tt0

yi(t0)
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Mathematical description of a clock

yi(t)

tth

, , , . . .






( +) = ( −) + ′( )

∆̂ ( +) = ∆̂ ( −) + ′′( )
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Mathematical description of a clock

yi(t)

tth th+1

( −
+ ) = ( +) + ∆̂ ( +) + −

∆
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Mathematical description of a clock

yi(t)

tth th+1

( −
+ ) = ( −) + + −

∆
∆̂ ( +) + ′( )

( −
+ ) = ( +) + ∆̂ ( +) + −

∆
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Mathematical description of a clock

yi(t)

tth th+1

= ( −) + + −
∆

(∆̂ ( −) + ′′( )) + ′( )

( −
+ ) = ( −) + + −

∆
∆̂ ( +) + ′( )

( −
+ ) = ( +) + ∆̂ ( +) + −

∆
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Mathematical description of a clock

yi(t)

tth th+1

∆̂ ( −
+ ) = ∆̂ ( −) + ′′( )

= ( −) + + −
∆

(∆̂ ( −) + ′′( )) + ′( )

( −
+ ) = ( −) + + −

∆
∆̂ ( +) + ′( )

( −
+ ) = ( +) + ∆̂ ( +) + −

∆
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Mathematical description of a clock

( ) :=

[
( −)

∆̂ ( −)

]
( ) :=

[ ′( )
′′( )

]






( + ) =

[
+ −
∆

]
( ( ) + ( ))

( ) =
[ ]

( )
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Consensus based clock synch

( ) =
∑

=

( ) ( ( )− ( ))

=

[ ]

( ) ∈ R
( ) ∈ R ×
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Consensus based clock synch

( )

| ( )− ( )| → ∀ ,

( ) =
∑

=

( ) ( ( )− ( ))

=

[ ]

( ) ∈ R
( ) ∈ R ×
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Communication graph

ij

G ( )

( )
( ) !=
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Consensus for higher order systems

!

!
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Ideal (unrealistic) time-invariant case

= +

( ) =

( + ) =

[
/∆

]
( ( ) + ( ))

( ) =
∑

=

( ( )− ( ))
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Ideal (unrealistic) time-invariant case

( )
( ) ( )

( ) := ( )−
∑

( )

"

"
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Ideal (unrealistic) time-invariant case

( )
( ) ( )

( ) := ( )−
∑

( )

"

"

Synchronization error
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!=

=

[ ]

Ideal (unrealistic) time-invariant case
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!=

=

[ ]

=

[ ]

Ideal (unrealistic) time-invariant case

( ) =
∑

=

[ ]
( ( )− ( ))
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Ideal (unrealistic) time-invariant case

! ∆

= / , ≤ ∆/

=






−max{ , } ( , ) ∈ E %=
−
∑

!= =

! ∆ ∆
∞

∆

!
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Ideal (unrealistic) time-invariant case

Metropolis weights

! ∆

= / , ≤ ∆/

=






−max{ , } ( , ) ∈ E %=
−
∑

!= =

! ∆ ∆
∞

∆

!
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Clock synchronization
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Conclusions

The consensus algorithm is an instance of a completely distributed 
design. This is an extreme design paradigm.

 It is intrinsically robust to external changes and highly self-adaptive so 

that a limited initial configuration and tuning effort is necessary.

None or limited information about the global structure of the system is 
necessary to the units.

Graceful performance degradation.

Importance of the interaction network topology.



5th HYCON2 PhD School

Conclusions

There are two important messages:

The consensus algorithm should be analyzed in the context of the 

applications in which it is used. This yields different performance 

indices with different relations with network topology.

In large scale networks both time and the number of agents may be 
large. Therefore there might emerge several asymptotic regimes in 

relation to how these two quantities grow with respect to each other. 


