
Real-Time Embedded
Computing Systems

Scuola Superiore Sant’Anna, Pisa
Giorgio Buttazzo

Computers everywhere

Today, 98% of all processors in the planet are
embedded in other objects:

Increasing complexity

200

functions
in a cell phone

40

60

80

200

1970 1990 2000 2010
0

20

1980 year

100

ECUs
in a car

ECU growth in a car

40

60

80

100

1970 1990 2000 2010
0

20

1980 year

Car software controls almost everything:

Engine: ignition, fuel pressure, water temperature,

Software in a car

g g , p , p ,
valve control, gear control,

Dashboard: engine status, message display, alarms

Diagnostic: failure signaling and prediction

Safety: ABS, ESC, EAL, CBC, TCS

Assistance: power steering, navigation, sleep sensors,
parking, night vision, collision detection

Comfort: fan control, air conditioning, music,
regulations: steer/lights/sits/mirrors/glasses…

Software evolution in a car

108

109

Lines of code
in a car

104

105

106

107

108

102

103

1980 1990 2000 2010

Reliability does not only depend on the correctness of
single instructions, but also on when they are
executed:

Software reliability

executed:

controllercontroller

t t

input
t

Δ

output
t + Δ

A correct action executed too late can be useless or
even dangerous.

Real-Time System

A computing system that must guarantee
b d d d di t bl tibounded and predictable response times
is called real-time system.

Predictability of response times must be guaranteed
in the worst-case scenario:in the worst-case scenario:

for each critical activity;

for all possible combination of events.

1. Basic concepts

Outline

2. Modeling real-time activities

3. Where timing constraints come from?

4. Real-time scheduling algorithms

5. Handling shared resources

A sample control application
Mobile robot equipped with:

two actuated wheels;
two proximity sensors;
a mobile camera;
a wireless transceiver.

Goal
Follow a path based on visual information;
Avoid obstacles;
Send system status every 20 ms.

Control view

visual‐based
navigation

visual
tracking

obstacle
avoidance

vehicle
control

10 ms

50 ms
object

recognition

mot_dx mot_sxpan tiltcamera US2US1

1 ms1 ms

5 ms20 ms
feature

extraction motor
control

motor
control

motor
control

motor
control

Software view
periodic task buffer

visual
tracking

obstacle
avoidance

vehicle
control

visual‐based
navigation

object
recognition

mot_dx mot_sxpan tiltcamera US2US1

feature
extraction

motor
control

Software structure

OUTPUT

INPUT

OUTPUT

task buffer

It is a system in which the correctness depends
not only on the output values, but also on the time

t hi h lt d d

Real-Time System

at which results are produced.

Environment
RT system

x

t

(t)

y (t+Δ)

RTOS responsibilities

The real-time operating system is responsible for:

activating periodic tasks at the beginning of eachactivating periodic tasks at the beginning of each
period;

deciding the execution order of tasks (scheduling);

solving possible timing conflicts during the access of
h d (t l l i)shared resources (mutual exclusion);

manage the timely execution of asynchronous
events (interrupts).

Real-Time ≠ Fast

A real-time system is not a fast system.

Speed is always relative to a specific
environment.

Running faster is good, but does not
guarantee a correct behaviorguarantee a correct behavior.

Speed vs. Predictability

• The objective of a real-time system is to guarantee
th ti i b h i f h i di id l t kthe timing behavior of each individual task.

• The objective of a fast system is to minimize the
average response time of a task set. But …

Don’t trust the average when you have to
guarantee individual performance

Sources of non determinism

Architecture
cache, pipelining, interrupts, DMA, p p g, p ,

Operating system
scheduling, synchronization, communication

Language
lack of explicit support for timelack of explicit support for time

Design methodologies
lack of analysis and verification techniques

Sequence of instructions that in the absence of
other activities is continuously executed by the
processor until completion

Task

processor until completion.

Task τiactivation time

start time
tai si fi

i

Ci

finishing time

computation
time The interval fi − ai

is referred to as the
task response time Ri

Ri

Ready queue
In a single processor system more tasks can be
ready to run, but only one can be in execution.

Ready tasks are kept in a ready queue, ordered by a
scheduling policy.

The processor is assigned to the first task in the queue
through a dispatching operation.

Ready queue

CPU
activation dispatching termination

τ1τ2τ3

Preemption

It is a kernel mechanism that allows to suspend
the running task in favor of a more important task.

Ready queue

CPU
activation dispatching termination

τ1τ2τ3

preemption

Preemption allows reducing the response times of
high priority tasks.
It can be temporarily disabled to ensure
consistency of certain critical operations.

Schedule

It is a particular task execution sequence:

Formally, given a task set Γ = {τ1, ..., τn}, a schedule is a
function σ: R+ → N that associates an integer k to each
interval of time [t, t+1) with the following meaning:

k = 0

k > 0

in [t, t+1) the processor is IDLE

in [t, t+1) the processor executes τk

Preemptive schedule

τ1

priority

τ2

τ3

σ(t)

0 2 4 6 10 12 148 16 18 20

3
2
1
0

0 2 4 6 10 12 148 16 18 20

τ1

priority

Task states

running

τ2

τ3

σ(t)

0 2 4 6 10 12 148 16 18 20

running
ready

ready

running

runningrunning

3
2
1
0

0 2 4 6 10 12 148 16 18 20

BLOCKED

Task states

READY RUNNING
activation

dispatching

termination

wait
BLOCKED

signal

READY RUNNING

preemption

ACTIVE

It is a task characterized by a timing constraint on its
response time, called deadline:

Real-Time Task

tai si fi

response time Ri

di
absolute deadline

(d a + R)

relative deadline Di

τi

response time Ri (di = ai + Ri)

A real‐time task τi is said to be feasible if it
completes within its absolute deadline, that
is, if fi ≤ di, o equivalently, if Ri ≤ Di

Slack and Lateness

Di

tai si fi

Ri

di

τi

slacki = di - fi

Di lateness Li = fi - di

tai si fi

Ri

di

τi

Tasks and jobs

A task running several times on different input
data generates a sequence of instances (jobs):data generates a sequence of instances (jobs):

Job 1
τi,1 τi,2 τi,3

Job 2 Job 3

ai,k ai,k+1
t

τi
Ci

ai,1

input
CiUi =

Periodic tasks

Ci

timer

computation time

(period Ti)

sync
output utilization factor

Ti
Ui

A periodic task τi generates an infinite sequence ofp i g q
jobs: τi1, τi2, …, τik (same code on different data):

Ti
Ci

τi

Ti

C

τi (Ci , Ti , Di) job τik

Periodic task model

Φ + (k 1) T

ai,k ai,k+1 t

Ci

ai,1 = Φi

task phase

ai,k = Φi + (k−1) Ti

di,k = ai,k + Di

often
Di = Ti

Estimating Ci is not easy

?

Each job operates on different data and
can take different paths.

Even for the same data computation time

occurrencies

loop
?

?

Even for the same data, computation time
depends on the processor state (cache,
prefetch queue, number of preemptions).

execution
time

Ci
min

Ci
maxtimer

Predictability vs. Efficiency

occurrencies

execution
time

Ci
min

Ci
max

Ci
avg

Ci estimate

safeefficientunsafe

HARD task SOFT tasknon‐RT task

Predictability vs. Efficiency

efficiency predictability

Ci
min

Ci
max

Ci
avg

Ci

Support for periodic tasks

task τi

while (condition) {

wait_for_period();

while (condition) {

}

ready

running

idle

activeactive

idle idle

τi

The IDLE state

dispatching

i

signal wait

RUNNINGREADY

terminateactivate

BLOCKED

Timer

wait_for_periodwake_up
IDLE

preemption

Jitter

It is a measure of the time variation of a periodic event:

t1 t2 t3

Absolute: max (tk – ak) – min (tk – ak)

a1 a2 a3 a4

Absolute: max (tk ak) min (tk ak)
k k

Relative: max | (tk – ak) – (fk-1 – ak-1) |
k

Types of Jitter

τi

Finishing‐time Jitter

fi,1

τi
fi,2 fi,3

si,1

τi

Start‐time Jitter

si,2 si,3, , i,3

Completion‐time Jitter (I/O Jitter)

si,1

τi
si,2 si,3fi,2fi,1 fi,3

Timing constraints

They can be explicit or implicit.

Explicit timing constraints• Explicit timing constraints
They are directly included in the system specifications.

Examples
– open the valve in 10 seconds
– send the position within 40 ms
– read the altimeter every 200 ms
– acquire the camera every 20 ms

Implicit timing constraints

They do not appear in the system specification,
but they need to be met to satisfy the performance

Example

What is the time validity of a sensory data?

y y p
requirements.

t0 ?

Example: automatic braking

obstacle
v

D
sensor visibility

obstacle

Dashboard
Controls BRAKEShuman Distribution

Unit

D

43

condition
checker

sensors
emergency
stop

Ts
acq.
task

Worst-case reasoning

Ts Δ Tb

v

44

obstacle in
the field

obstacle
detected

brake
pressed

train
stopped

D = sensor visibility

v(Ts + Δ) + Xb < D

a = μ g

g
vX b μ

=
2

2

2

2
1 atvtX b −=

v = a t

45

D
g

vTv s <+Δ+
μ2

)(
2

Δ−−<
g

v
v
DTs μ2

Tmax
ggDgv μμμ Δ−+Δ= 2)(2

max

46
speedvmaxv

Ts

Problem formulation

τi (Ci, Ti, Di) job τik

For each periodic task τi guarantee that:

rik dikt = 0

48

each job τik is activated at rik = (k-1)Ti

each job τik completes within dik = rik + Di

Timeline Scheduling

It has been used for 30 years in military
systems, navigation, and monitoring systems.systems, navigation, and monitoring systems.

Examples
– Air traffic control systems

– Space Shuttle

– Boeing 777

49

Boeing 777

– Airbus navigation system

Method

Timeline Scheduling

• The time axis is divided in intervals of equal
length (time slots).

• Each task is statically allocated in a slot in
order to meet the desired request rate.

50

• The execution in each slot is activated by a
timer.

Example

40 Hz 25 ms
f T

A

task

Δ = GCD (minor cycle)
20 Hz

10 Hz

50 ms

100 ms

B

C

Δ GCD (minor cycle)

T = lcm (major cycle)

TΔ

51

0 25 50 75 100 125 150 175 200

CA + CB ≤ Δ
CA + CC ≤ Δ

Guarantee:

Implementation

A
timer

minorA
B

A
C

timer

timer

minor
cycle

major
cycle

52

A
B

A
timer

Timeline scheduling

Advantages

• Simple implementation (no real-time operating
system is required).

• Low run-time overhead.

• It allows jitter control

53

• It allows jitter control.

Disadvantages

Timeline scheduling

• It is not robust during overloads.

• It is difficult to expand the schedule.

• It is not easy to handle aperiodic activities.

54

Problems during overloads

What do we do during task overruns?

• Let the task continue
– we can have a domino effect on all the other

tasks (timeline break)

• Abort the task

55

– the system can remain in inconsistent states.

Expandibility

If one or more tasks need to be upgraded, we may
have to re-design the whole schedule again.g g

Example: B is updated but CA + CB > Δ

Δ

56

0 25
A B

• We have to split task B in two subtasks (B1,
B) and re build the schedule:

Expandibility

B2) and re-build the schedule:

0 25 50 75 100

B1 B1B2 B2A A A AC
• • •

57

CA + CB1 ≤ Δ
CA + CB2 + CC ≤ Δ

Guarantee:

If the frequency of some task is changed, the
impact can be even more significant:

Expandibility

25 ms

50 ms

100 ms

25 ms

40 ms

100 ms

T T
A

task

B

C

58

100 ms 100 msC

before after

Δ = 25 Δ = 5
T = 100 T = 200

minor cycle:
major cycle:

40 sync.
per cycle!

TΔ

Example

0 25 50 75 100 125 150 175 200

Δ

Δ

59

0 25 50 75 100 125 150 175 200

T

Priority Scheduling

Method
• Each task is assigned a priority based on its

timing constraints.

• We verify the feasibility of the schedule using
analytical techniques.

Tasks are executed on a priority based

60

• Tasks are executed on a priority-based
kernel.

How to assign priorities?

• Typically, task priorities are assigned based on
the their relative importancethe their relative importance.

• However, different priority assignments can
lead to different processor utilization bounds.

61

Priority vs. importance
If τ2 is more important than τ1 and is assigned
higher priority, the schedule may not be feasible:

τ1

τ2
P1 > P2

deadline miss

62

τ1

τ2
P2 > P1

But the utilization bound can be arbitrarily small:
An application can be unfeasible even
when the processor is almost empty!

Priority vs. importance

τ1

τ2
P2 > P1

ε

∞

when the processor is almost empty!

deadline miss

63

τ2

U =
ε

T1
+

∞
C2 0

Rate Monotonic (RM)

• Each task is assigned a fixed priority
proportional to its rate [Liu & Layland ‘73].

0

500 10025 75
τA

τB
40

64

0

0
τC

40 80

100

Rate Monotonic is optimal

RM is optimal among all fixed priority
algorithms (if Di = Ti):

If there exists a fixed priority assignment
which leads to a feasible schedule, then
the RM schedule is feasible.

65

If a task set is not schedulable by RM,
then it cannot be scheduled by any fixed
priority assignment.

Deadline Monotonic is optimal
If Di ≤ Ti then the optimal priority assignment is
given by Deadline Monotonic (DM):

τ1

τ2
P2 > P1

DM

66

τ1

τ2
P1 > P2

RM

Priority Assignments

• Rate Monotonic (RM):
/

optimal among FP algs

for T = D
Pi ∝ 1/Ti (static)

• Deadline Monotonic (DM):
Pi ∝ 1/Di (static)

()

optimal among FP algs

for T ≤ D

ti l• Earliest Deadline First (EDF):
Pi ∝ 1/dik (dynamic)

di,k = ri,k + Di

optimal among
all algs

How can we verify feasibility?

• Each task uses the processor for a fraction of
time: Ct e

i

i
i T

CU =

• Hence the total processor utilization is:

∑=
n

iCU ∑
=i i

p T
U

1

• Up is a misure of the processor load

A necessary condition

A necessary condition for having a feasible
schedule is that Up ≤ 1.

In fact, if Up > 1 the processor is overloaded
hence the task set cannot be schedulable.

However, there are cases in which Up ≤ 1 but
the task set is not schedulable by RM.

An unfeasible RM schedule

944.043
=+=pU

6 120 183 9 15
τ1

96p

0 9 183 6 12 15

deadline miss

τ2

Basic results
In 1973, Liu & Layland proved that a set of n
periodic tasks can be feasibly scheduled

()121

1
−≤∑

=

n
n

i i

i n
T
Cunder RM if

if and only ifunder EDF 1
1

≤∑
n

i

i

T
C

1=i iT

Assumptions:
Independent tasks

Di = TiΦi = 0

Utilization bound for large n

()12 /1
lub −= nRM nU

for n → ∞ U → ln 2for n → ∞ Ulub → ln 2

Schedulability bound

CPU%
RM EDF

69%

CPU%

n

A special case

If tasks have harmonic periods Ulub = 1.

1
8
4

4
2

=+=pU

τ

0

4 120 8 16
τ1

τ2
4 128 16

Schedulability region

1
U1

1≤∑
n

iU

The U-space

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
∑

=i
i

EDF

75

U2
10.83

RM

1
U1

Ci Ti

Schedulability region
The U-space

0.83

EDF

τ1

τ2

Ci Ti

3

4

6

9

94.0
9
4

6
3

=+=pU
1/2

76

U2
10.83

RM

4/9

Schedule

6 120 183 9 15
τ1

EDF

0 9 183 6 12 15
τ2

EDF

6 120 183 9 15
τ1

RM

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ2

The Hyperbolic Bound

• In 2000, Bini et al. proved that a set of n
periodic tasks is schedulable with RM if:p

2)1(
1

≤+∏
=

n

i
iU

Schedulability region

1
U1

1≤∑
n

iU

The U-space

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
∑

=i
i

EDF

79

U2
10.83

RM

1
U1

1≤∑
n

iU

Schedulability region
The U-space

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
∑

=i
i

2)1(≤+∏
n

iUEDF

80

U2
10.83

)(
1

∏
=i

i

RM

Response Time Analysis

1. For each task τi compute the interference
due to higher priority tasks:due to higher priority tasks:

2. compute its response time as

R C I

∑
>

=
ik PP

ki CI

Ri = Ci + Ii

3. verify whether Ri ≤ Di

Computing the interference

τk

0 Ri

τi

Interference of τk on τi
in the interval [0, Ri]: k

k

i
ik C

T
RI =

k

Interference of high
priority tasks on τi: k

k

i
i

k
i C

T
RI ∑

−

=

=
1

1

Computing the response time

k
i

i

ii C
T
RCR ∑

−

+=
1

kk T=1

Iterative solution:

ii CR =0

it t til

k
k

s
i

i

k
i

s
i C

T
RCR

)1(1

1

−−

=
∑+=

iterate until
)1(−> s

i
s
i RR

Processor Demand

t1 t2

The processor demand in [t1, t2] is the computation time
of those jobs started at rik ≥ t1 with deadline dik ≤ t2:

84

∑
≤

≥

=
2

1

),(21

td

tr
i

i

i

Cttg

Processor Demand

0 L

Processor Demand in [0, L]

85

∑
=

−+
=

n

i
i

i

ii C
T

DTLLg
1

),0(

Processor Demand Test

LLgL ≤>∀),0(,0

Question

86

How can we bound the number of intervals in
which the test has to be performed?

Example

τ1

8

g(0, L)

τ2
0 2 6 124 8 10 14 16

L

87

0

2

4

6

L

Bounding complexity

• Since g(0,L) is a step function, we can check
feasibility only at deadline pointsfeasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can
check feasibility up to the hyperperiod H:

H = lcm(T1, … , Tn)

88

• Moreover we note that: g(0, L) ≤ G(0, L)

Bounding complexity

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+
=

n

i
i

i

ii C
T

DTLLG
1

),0(

i
n

ii

n
i

T
CDT

T
CL ∑∑ −+=)(

89

iii i TT == 11

∑
=

−+=
n

i
iii UDTLU

1
)(

Limiting L

∑
=

−+=
n

i
iii UDTLULG

1

)(),0(
L

g(0, L)

G(0, L)

∀ L > L*

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

90

L
L*

∀ L > L*

g(0,L) ≤ G(0,L) < L

LLgDL ≤∈∀),0(,

Processor Demand Test

g),(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

91

(1, , n)

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

Critical sections

τ2τ1

globlal
memory buffer

write readx = 3;
y = 5;

a = x+1;
b = y+2;
c = x+y;

int x;
int y;

wait(s)

signal(s)

wait(s)

c x+y;signal(s)

signal(s)

Blocking on a semaphore

τ τ
P1 > P2

Δ

CS

τ1 τ2

CS

τ1

τ2

Δ

It seems that the maximum blocking
time for τ1 is equal to the length of the
critical section of τ2, but …

Schedule with no conflicts

priority

τ1

p y

τ2

τ3

Conflict on a critical section

priority Bp y

τ1

τ2

τ3

priority B

Conflict on a critical section

p y

τ1

τ2

τ3

Priority Inversion

A high priority task is blocked by a lower-priority
t k f b d d i t l f titask a for an unbounded interval of time.

Solution
Introduce a concurrency control protocol for
accessing critical sectionsaccessing critical sections.

Non Preemptive Protocol

• Preemption is forbidden in critical sections.

I l t ti h t k t CS it• Implementation: when a task enters a CS, its
priority is increased at the maximum value.

ADVANTAGES: simplicity

PROBLEMS: high priority tasks that do not use
the same resources may also block

priority B

Conflict on a critical section

τ1

p y

τ2

τ3

Schedule with NPP

priorityp y

τ1

τ2

τ3

PCS = max{P1, … Pn}

Problem with NPP

priority uselessp y

τ1

τ2

blocking

τ3

τ1 cannot preempt, although it could

Highest Locker Priority

A task entering a resource Rk gets the
highest priority among the tasks that use Rk

Implementation:
• Each task τi has a dynamic priority pi initialized to Pi
• Each semaphore Sk has a ceiling

• When τi locks Sk, pi is increased to C(Sk)

• When τi unlocks Sk, its priority goes back to Pi

C(Sk) = max {Pi | τi uses Sk}

Schedule with HLP

priority

S1
S2 C(S2) = P2

C(S1) = P1

priority

τ1

τ2

ττ3

τ2 is blocked, but τ1 can preempt τ3 within its
critical section, because P1 > C(S2)

Problem with NPP and HLP
A task is blocked when attempting to preempt,
not when accessing the resource.

CS

test

τ1

CS

τ2

τ1

τ

τ1 blocks just in case ...

CS τ2

P1
P2

p2

Priority Inheritance Protocol
[Sha, Rajkumar, Lehoczky, 90]

A task increases its priorit onl if it blocks• A task increases its priority only if it blocks
other tasks.

• A task τi in a resource Rk inherits the highest
priority among those tasks it blocks.

pi(Rk) = max {Ph | τh blocked on Rk}

Schedule with PIP

priority
direct blocking

τ1

τ2

τ3

push-through blockingP1

τ3

P1

P3

p3

Types of blocking

• Direct blocking
A task blocks on a locked semaphoreA task blocks on a locked semaphore

• Push-through blocking
A task blocks because a lower priority
task inherited a higher priority.

BLOCKING:
a delay caused by a lower priority task

Identifying blocking resources

• A task τi can be blocked by those
semaphores used by lower priority tasks
• directly shared with τi (direct blocking)

• shared with tasks having priority higher than τi
(push-through blocking).

Theorem: τi can be blocked at most once
by each of such semaphoresby each of such semaphores

Theorem: τi can be blocked at most once
by each lower priority task

Bounding blocking times

• Let ni be the number of tasks with priority
less than τi

• Let mi be the number of semaphores that
can block τi

Theorem: τi can be blocked at most on
the duration of αi = min(ni, mi)
critical sections

Example
priority

τ1 WX Y X

τ2

τ3

• τ1 can be blocked once by τ2 (on X2 or Y2) and
b (X W)

Y

WX

X

Z

Z

once by τ3 (on X3 or W3)

• τ2 can be blocked once by τ3 (on X3, W3 or Z3)

• τ3 cannot be blocked

• NOTE: τ1 cannot be blocked twice on X

priority

τ1 WX Y X

Example

• B1 = δ(Y2) + δ(W3)

τ2

τ3

Y

WX

X

Z

Z

• B2 = δ(W3)

• B3 = 0

τ1

τ2 YX

WX Y

Z

X

How can τ2 be blocked by W3?

τ3 WX Z

τ1 WX Y X

P1

τ2

τ3 X W

Chained blocking with PIP

priority B1

τ1

B2 B3

1

τ2

τ3

τ4

Theorem: τi can be blocked at most once
by each lower priority task

τ4

Comparison

NPP HLP PIP

1 1 αi = min(ni,mi)# of blocking 1 1 αi min(ni,mi)# of blocking

pessimism very high high low

no no yes

yes yes nodeadlocks
avoidance

chained
blocking

pessimism very high high low

transparency

stack sharing yes yes no

yes no yes

Accounting for blocking times

preemption
by HP tasksby HP tasks

τi
blocking by
LP tasks

Utilization test

()121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

preemption
by HP tasks

Accounting for blocking times

by HP tasks
τi

blocking by
LP tasks

Hyperbolic bound

211
1

1

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∀ ∏

−

= i

ii
i

k k

k

T
BC

T
Ci

Response Time Analysis

preemptionτi
blocking

iii CBR +=0

iterate until

k
k

s
i

i

k
ii

s
i C

T
RCBR

)1(1

1

−−

=
∑++=

e a e u
)1(−> s

i
s
i RR

