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Renewable Integration
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Renewables: Drivers and Targets

� Increased interest and investment in renewable energy sources

� Drivers:

− Environmental concerns, carbon emission
− Energy security, geopolitical concerns
− Nuclear power safety after Fukushima

� Ambitious targets:

− CA: RPS 33% energy penetration by 2020
− US: 20% wind penetration by 2030
− Denmark: 50% wind penetration by 2025

How will we economically meet these aggressive targets?
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Renewables: where and how much?

� Grid-side wind farms, large PV facilities, thermal-solar plants

− away from population centers
− need transmission investment
− centralized dispatch

� Distribution-side small rooftop PV at ∼ 106 locations

− power generated and consumed locally
− decentralized control

Large fraction of renewable investments will be on distribution-side
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Renewable Generation is Variable

Solar data – Jay Apt and Aimee Curtright, CMU, 2009

Wind data – Hourly power from Nordic grid for Feb. 2000 P. Norgard et al.,2004
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Integration Costs

� Increased variability is the problem!

− Operational challenges: ±3 GW/h wind ramps
− Reserve requirements: 3X increases needed

� Reserve capacity increases needed with current practice
under 33% penetration in CA [Helman 2010]

Load following: 2.3 GW → 4.4 GW
Regulation: 227 MW → 1.4 GW
Excess reserves defeat carbon benefits

� Added costs due to reserves at 15% renewable penetration

≈ $2.50 - $5 per MWh of renewable generation
EWITS study, NREL, 2010

Reserves are a significant cost for renewable integration
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Mitigating Reserve Costs – Approaches

Supply-side Improved forecasting
Better use of Information Risk limiting dispatch

Demand-side Storage, HVACs
Exploiting Flexibility Electric vehicles

Market-side Intraday markets
Novel Instruments New incentive strategies
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Power System Operations
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The Core Problem

� The Core Problem: Balancing Supply and Demand

− economically through markets
− with transmission constraints
− while maintaining power quality (voltage, frequency)
− and assuring reliability against contingencies

� Today

− All renewable power taken, treated as negative load
subsidies: feed-in tariffs, etc

− Net load n(t) = `(t)− w(t)
− Tailor supply to meet random demand

� Tomorrow

− Renewables are market participants
− Tailor demand to meet random supply
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System Operations Today

� Complex, vary immensely across regions, countries

� Constructing the supply to meet random demand

− Feed-forward: use forecasts of n(t) in markets
− Feedback: use power & freq measurements for regulation

� Markets (greatly simplified)

− Day ahead: buy 1 hour blocks using forecast of n(t)
− “Real-time”: buy 5 min blocks using better forecast of n(t)

� Regulation

− For fine imbalance (sub 5-min) between supply and demand
− Must pay for regulation capacity
− Various time-scales
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Day Ahead Market Dispatch
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Real Time Market Dispatch
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Regulation
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Regulation Time-scales

R

0 10 20 30 40
sec

5 10
min

Capacity R for various regulation services procured in advance

time-scale ancillary service detail

< 4s governor control decentralized
4s to 10m AGC centralized control

automatic generators on call respond
generation control to SO commands
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Tomorrow: Things Fall Apart

� Myopic decision-making

− ignores forecast error
− doesn’t exploit that there is a recourse opportunity

Approach: Risk-limiting-dispatch Rajagopal et al 2012

� Too much variability

− 33% renewables → lots of variability → 3X reserves
− variability at many time-scales and magnitudes

need distinct regulation services

solar → more frequency regulation
wind → more operating reserves
large wind ramps → ???

Solution: tailor demand to meet random supply by
exploiting flexible loads
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Aggregate Flexibility
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A Paradigm Shift

� Today: tailor generation to meet random load

� Tomorrow: tailor load to meet random generation

� Enabling ingredient: flexible loads

− residential HVAC
− commercial HVAC
− deferrable appliance loads
− electric vehicles

� Flexible loads will enable deep renewable penetration
without large increases in reserves
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The Sound-bite

“Flexible loads can absorb variability in renewable generation”

� Devil is in the details, and the sound-bite is vague ...

� What variability?

− variability in wind or rooftop solar?
− what time scales? wind ramps or routine fluctuations?

� What Ancillary Services can be provided?

− load-following regulation?
− frequency regulation?

� Architecture?

− direct load control or load control through price proxies?
− degree of decentralization?
− hardware infrastructure?

� Where is the economic value?
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The Value of Flexible Loads

Player Value

Flexible Loads discounted electricity price
Utilities better forecasting

Aggregator minimizing operating costs
Renewable Generators firming variable power

System Operator displacing reserve capacity
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An Example of What is Possible

� Direct load control: 60,000 diverse AC units

Control u(t) = common setpoint change
Measurements θk(t) = temperatures of unit k

Objective total power P(t) tracks command r(t)
high freq part of power from wind farm

Model collection of TCLs: stochastic hybrid system
Malhamé and Chong, IEEE TAC, 1985

� Result: ±0.1◦C setpoint changes can track high freq part of w(t)!

Callaway, Energy Conversion and Management, 2009
Flexibility in TCL’s can firm wind generation
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Results

� P(t) ≈ w(t)

� Tracking error ≈ 1%

� Set-point changes ≈ 0.1◦C

� Proof-of-concept result
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Two Central Problems

� Consider collection of flex loads

� Modeling Aggregate Flexibility

− characterize the set of admissible power profiles
that can meet the needs of flex loads

− want a simple, portable model
− System Operator uses model for procuring AS

� Control Algorithms

− aggregator or cluster manager controls flex loads
− allocation available generation to loads
− allocation must be causal
− not traditional control, more like CS scheduling
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Two Business Cases

� Selling aggregate flexibility as an AS

− ex: residential HVAC
− loads pay fixed price per MW
− flexibility is sold as load-following regulation service

� Using aggregate flexibility to minimize operating costs

− ex: shopping mall EV charging
− loads pay low-cost bulk power + expensive reserves
− flexibility can minimize reserve cost
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Aggregate Flexibility

� Collection of flexible loads, indexed by k

− For each load, define a nominal power profile Po
k (t)

− Many perturbations e from nominal satisfy the load

Ek = {e : e + Po
k satisfies load k}

� Aggregate nominal power n(t) =
∑

k P
o
k

� Aggregate flexibility

E =
∑

Ek

� Key problem: characterize E
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Generalized Electricity Storage

� Models a set of power profiles

u(t) ∈ Batt(φ) ⇐⇒


u(t) ∈ [−m−,m+]
ẋ = −ax + u
x(0) = ξ =⇒ x(t) ∈ [−C−,C+]

Parameters φ

parameter meaning

m−,m+ discharge/charge rate limits
C−,C+ up/down capacity

a dissipation
ξ init condn

� Compact, portable model
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Result Summary

� Consider collection of flex loads: TCLs, EVs, etc

� Aggregate flexibility can be well modeled as a stochastic battery:

Batt(φ1) ⊆ E ⊆ Batt(φ2)

� Battery parameters are random processes

− depend on exogenous variables
− ex: ambient temp, arrival/departure rates, charging needs, etc

� Simple scheduling algorithms:
Given u ∈ Batt(φ1), can allocate u to flex loads

− u =
∑
k

ek , ek ∈ Ek

− algorithms are causal
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Aggregate Flexibility
from EVs
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Modeling Electric Vehicles

� Simple model

− arrival a, departure d , needs energy E , max rate m∫ d

a
p(t)dt = E , 0 ≤ p(t) ≤ m

− Ignoring many details: range for E , quantized power levels,
minimum rate during charging, ...

� Each EV load is a task parametrized by (a, d ,E ,m)

� EV announces task parameters on arrival

� Task are pre-emptive: can interrupt and resume servicing
else problems become bin packing (NP Hard)

Kameshwar Poolla The Grid with Intelligent Periphery 23 of 69June 24, 2013 23 / 69



Some Simple Concepts

� Energy state of task at time t:

e(t) = E −
∫ t

a
p(τ)dτ = remaining energy needed

� Task is active at time t if a ≤ t ≤ d

� A(t) = set of all active tasks at time t

� Nominal load profile n(t)

− Service task at a constant rate E/(d − a)
− Don’t exploit flexibility
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Adequacy

� Many power profiles can meet EV needs

� Available generation g(t)

� σ allocates available generation g(t) to tasks

− σ is causal if allocations at time t depend only on:

info from past tasks , past generation

− g(t) is adequate if ∃ σ that completes all tasks
− g(t) is exactly adequate if adequate + no surplus

� Agenda:

− When is g exactly adequate?
− If it is, what policy σ will complete the tasks?
− If it isn’t, we have at times shortfall/surplus generation

What are the minimum energy reserves we need?
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Common Scheduling Policies

� Build priority stack

� Earliest Deadline First [EDF]: Prioritize tasks by deadline d

� Least Laxity First [LLF]: Prioritize tasks by laxity λ

Laxity λ(t) =

time remaining︷ ︸︸ ︷
(di − t) −

time required︷ ︸︸ ︷
(ei (t)/mi )

� Very easy to implement!

� Inspired by Processor-Time-Allocation research
[ex: Liu (’73), Dertouzos (’74)]
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Testing Adequacy

g(t) available generation
n(t) nominal load profile
v(t) deviation g − n

x(t) cumulative deviation

∫ t

0
v(τ)dτ

Theorem

Assume no rate limits
g is exactly adequate ⇐⇒

−C− ≤ x(t) ≤ C+ where

{
C− =

∑
i∈A(t) E

i t−ai
d i−ai

C+ =
∑

i∈A(t) E
i d i−t
d i−ai

� EDF scheduling works

� x(t) > C+ =⇒ have surplus, need down-regulation

� x(t) < −C− =⇒ have shortfall, need up-regulation
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Aggregate Flexibility of EVs

� An equivalent view ...

Theorem

Assume no rate limits
g is exactly adequate ⇐⇒ g = n + u where u ∈ Batt(φ).
Battery has no dissipation, no rate limits, and time-varying capacities:

C− =
∑

i∈A(t)

E i t − ai

d i − ai

C+ =
∑

i∈A(t)

E i d
i − t

d i − ai

� Capacities are random processes

− depend on arrival/departure rates, charging needs, etc

Aggregate flexibility of EVs can be modeled as a stochastic battery
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Intuition

� Flexibility captured by battery capacity [−C−(t),C+(t)]

− time-varying
− depends only on active task info
− easily computed causally from T
− ex: Bernoulli arrival of identical tasks

C− = C+ ≈ 0.5
∑

i∈A(t)

E i = C (t)

� Aggregate Flexibility C (t)

− C (t) = half energy needs of active tasks at time t
− keep cumulative deviation x in sleeve ±C (t)
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Minimum Energy Reserve Policy

� Suppose available generation is not exactly adequate

− shortfall → up-regulation rup(t)
− surplus → need down-regulation rdown(t)

� How much reserves are needed? How to schedule in real-time?

Theorem

Define the random process y(t) with y(0) = 0 and

dy =

{
v(t) if |y(t)| ≤ C

0 else

The minimum energy reserve policy to complete the tasks is

rup(t) = (y(t) + v(t)− C )+

rdown(t) = (−C − y(t)− v(t))+
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Illustration

r−

r+

C−

C+

x
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Illustration

r−

r+

C−

C+

x
y

Kameshwar Poolla The Grid with Intelligent Periphery 31 of 69June 24, 2013 31 / 69



ex: Green Garage

� Car statistics
Average EV arrivals 50 per hour
Average time parked h hours
Average charge rate 4 kW
Nominal load n(t) ≈ 50× h × 4 kW

� Aggregate Flexibility

− Average energy needed at any time

ave num of cars
50h ×

charge rate
4 ×

ave stay

h = 200h2 kWh

− Cars behave like nominal + stochastic battery:
− Battery capacity ≈ ±100h2 kWh
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What happens with Rate Limits?

Theorem

Assume rate limits. Suppose g is adequate.
Causal scheduling policy may not exist.

� Must use forecasts of generation g(t) and loads T
� Model predictive control works well!

� Simulation studies reveal

− Reserve energy: all scheduling policies are comparable
− Reserve capacity: MPC is much better

A. Subramanian et al, [ACC 2012, CDC 2012]
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Aggregate Flexibility
from TCLs

Kameshwar Poolla The Grid with Intelligent Periphery 33 of 69June 24, 2013 33 / 69



Simple Model of a TCL (Cooling Load)

� Dead-band model

θ̇ =

{
− 1

CR (θ − θa + PmR) + w ON state

− 1
CR (θ − θa) + w OFF state

� State-switching boundaries

θ = θr + ∆, θ = θr −∆

− Control input = setpoint θr
− Process disturbance w for model uncertainty
− Simplified model, ignoring many details

C thermal capacitance 2 kWh/◦C
R thermal resistance 2 ◦C/kW
Pm power consumption when ON 5.6 kW
∆ deadband 1 ◦C
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Even Simpler Model

� Continuous-power model

θ̇ = − 1

RC
(θ − θa + Re(t)) + w

− Control input e(t) is power supplied to TCL
− Constraint: e(t) ∈ [0,Pm]

� We use this model for analysis

� Use better dead-band model for simulations

� Later need to show that for a large population,
aggregate behavior of TCLs is same under either model
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Nominal Average Power

� Assume θa ≈ const

� Average power consumption to maintain θ(t) = θr

Po =
θa − θr

R

� Nominal average power Po

− function of HVAC, ambient temp, set-point
− slowly-varying random process

� Measuring Po is critical: firmware solution

− know θr from thermostat
− measure θ(t)
− run-time ID of R, θa
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Collection of TCLs

� N diverse TCL loads

� Each modelled by {θrk ,∆k ,Rk ,Ck ,P
m
k }

� Nominate aggregate power

n(t) =
∑
k

Pk
o = fn of ambient, TCLs, set-points

� Some constants

a =
1

N

∑
k

1/(RkCk) = ave time constant

m− ≈
∑
k

Po
k = agg nominal power

m+ ≈
∑
k

(Pm
k − Po

k ) = agg peak - agg nominal powerfk
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Adequacy

� Many power profiles can keep TCLs within
user-specified comfort bounds θr ±∆

� Available generation g(t)

� Scheduling policy σ allocates g(t) to TCLs

− σ is causal if allocations at time t depend only on:

past info from TCLs , past generation

− g(t) is adequate if ∃ σ such that

|θk(t)− θkr | ≤ ∆k

− g(t) is exactly adequate if adequate + no surplus
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Aggregate Flexibility

g(t) available generation
n(t) nominal aggregate power

Theorem

g is exactly adequate =⇒ g = n + u where u ∈ Batt(φ1).
Battery has dissipation a, rate limits [m−,m+], and capacity:

C ≈
∑
k

∆k(1 + fk)

g is exactly adequate ⇐= g = n + u where u ∈ Batt(φ2).
Battery has dissipation a, rate limits [m−,m+], and capacity:

C ≈
∑
k

∆k(1− fk)

Aggregate flexibility of TCLs can be modeled as a stochastic battery
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How Tight are the Battery Models?
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Priority Stacks

Hot

Cold

Hot

Cold

ON Stack
Sorted by θk(t)− θ

OFF Stack
Sorted by θ − θk(t)
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Priority Stack Controller

Hot

Units available for
down-regulation

Units available for
up-regulation

Cold

ON Stack
Sorted by θk(t)− θ

OFF Stack
Sorted by θ − θk(t)

no-short-cycling
constraint

� turn OFF colder units to provide power

� turn ON warmer units to absorb power

� no-short-cycling constraints
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Control Architecture

Collection
of TCLs

Priority Stack
Controller

Nominal
Power n(t)

System Operator
AGC Command e(t)

+−

Aggregate
Power P(t)

−+

� Two key problems:

− Measuring aggregate power P(t)
− Computing nominal aggregate power n(t)
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Control Architecture Details

� Centralized control, sampling rate 0.25 Hz

� Each TCL:

1 during installation calibration of Pm (hopefully ≈ const)
2 measure θk(t), θr (already available)
3 estimate R,C , θa,∆ (standard system ID)
4 compute and transmit to cluster manager

Po
k ,Pk(t), priority = πk(t)

� Cluster manager:

1 computes nominal aggregate power n(t)
2 computes aggregate power P(t)
3 updates priority stack
4 receives AGC command, computes control action
5 broadcasts control action to TCLs
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Simulations

� Heterogenous Population of 1000 TCLs

− nominal power = 2.4 MW
− peak power (all units ON) = 5.6 MW
− randomized model parameters R, C , Pm, a
− common ambient temperature θa
− synthetic process noise
− no-short-cycling constraint

� Stochastic Battery Model

− charge-rate constraints [−2.4, 3.2] MW
− capacity 1 MWh
− dissipation time const 4 h
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Excellent Tracking of AGC Command
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Asking for too much!

500 1,000 1,500 2,000 2,500 3,000 3,500
−4

−2

0

2

4

Time (s)

P
ow

er
(M

W
)

Regulation Signal
Power Deviation
Stochastic Battery Rate Limits

AGC command exceeds stochastic battery limits

Kameshwar Poolla The Grid with Intelligent Periphery 47 of 69June 24, 2013 47 / 69



Reserves:
Procurement and Payment
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Regulation Reserves: today and tomorrow

� Focus on regulation reserves

− Capacity procured in forward market
− ex post energy (mileage) payment
− Reserves follow AGC command from system operator
− 4 sec to 10 min time-scale

� status quo:

− Historically, all uncertainty was from loads
− Load-serving entities pay
− Costs passed on to rate-payer

� Tomorrow: 33% renewable penetration

− Much more variability injected
− Much more reserve capacity needed with current practice

227 MW → 1.4 GW in CA [Helman 2010]
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Two Problems

� Procurement

− Generator resources for reserves defeat carbon benefit of
renewables

− Can we use load flexibility for regulation reserves?

� Payment

− It is a big problem! status quo is being challenged
− ERCOT: Nov 2012, BPA: Sep 2012
− Paying wind to curtail, utilities object to paying more for

regulation
− Who should pay fairly?

� Principle: Flexible loads are like electricity storage

� Principle: Cost-allocation for cost-causation
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Flexible Loads as Stochastic Batteries

� Universal model of flexibility

� Nominal power:
arranged through dispatch

� High-frequency residual:
regulation AS

� Flexible loads

− Electric vehicles (done)
− Residential HVACs (done)
− Commercial HVAC (open)

Flexible
Loads

Stochastic
Battery

g(t)

v(t) n(t)

Nominal
Power

� Residential HVACs – large capacity bcz units can be phase shifted

� Commercial HVACs – small capacity bcz of efficiency droop in chillers
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Generalized Regulation Procurement

Power
Network

Stochastic
Batteries

Electricity
Storage

Variability
Sources

Conventional
Generators

� Sources: load forecast errors, wind farms, solar PV

� Sinks: generators, storage, flex loads

� Network: line capacities, losses
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Generalized Regulation Procurement ...

� ex ante problems

− Flexible loads forecast their capability
− SO conducts optimal economic stochastic procurement

� run time problems

− Flexible loads deliver contracted regulation
− System operator conducts verification

� Single-bus case: optimal procurement reduces to a linear program

� General Problem: open
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Incentivizing Participation
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The Problem of Small Rewards

� Want: consumers to turn off AC for ∼ 10 min on request

− Big value to grid: lower reserve costs ≈ $15 M/month in CA
− Small value per household: ≈ $20/month
− Reward is too small to get people excited

� A cognitive bias: [Kahneman & Tversky, 1979]

− People prefer low prob large reward over a guaranteed small
reward

− ex: 5¢ for recycling a can vs. $5 with prob 0.01
− Extensive empirical evidence validating this bias

� Idea: Pool system benefit, raffle few large rewards

� Applications to social networks: transportation, health care, energy
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Ex: Lottery Incentives for Transportation

� The INSTANT Project: Balaji Prabhakar [Stanford]

− Change commuter behavior in Bangalore, India
− Road congestion =⇒ added fuel cost, lost man-hours
− No incentive to shift to off-peak commute times

� IExpt details

− 14,000 commuters
− Credits for off-peak commute
− Credits qualify for raffle
− Average winnings = 28$
− Expected payoff = 24¢/week

too small to attract participation
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Results

� Large reduction in average commute times

� 70 min → 55 min, saving fuel cost, and 2500 man-hrs/day

Results'of'INSTANT'Project'

Source:''D.'Merugu#et.'al.,'�An'incen+ve'mechanism'for'deconges+ng'the'roads:'a'pilot'program'in'Bangalore,�''In'Proc.'of'ACM'NetEcon'Workshop'2009.'

•  Raffle'incen+ve'induced'large)reduc'on)in)average)commute)'mes)
•  1900'winners''[average'prize'per'winner'='$28]'

An)equal)distribu'on)of)prize)money)across)decongesters)would)have))
yielded)24)cents/week)–)a)very)small)reward!)
)

No+ce'the'slow'
rebound'aher'the'
incen+ve'is'removed'

D. Merugu et al., Proc. of ACM NetEcon Workshop, 2009
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Singapore-UCB Experiment

� Goal: show demand flexibility can be induced by lottery incentives

− More effective than fixed-rebate incentives
− Target: 5000 households by 2014

� Protocol: indirect load control

1 Utility broadcasts SMS flexibility request to consumers
2 Users return SMS with intent to participate
3 Smart plugs validate intent
4 Credits allocated to consumers
5 Weekly lottery draw

� Minimal technology infrastructure

Smart phones, wi-fi enabled plugs, software
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Selling Random Energy
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Re-thinking the Product

� Today → utilities must supply on-demand power

� But, some customers will accept flexible power

� Two paradigms:

� Reliability differentiated: Tan & Varaiya, J. Econ Dyn Cont, 1993

− Get constant power s with probability > ρ
− Price depends on ρ

� Deadline differentiated: Bitar & Low, CDC, 2012

− Get energy E on service window [t, t + h]
− Price depends on h

h (hrs) 0 0.5 1

price ($/KWh) 0.35 0.3 0.2

Product: differentiated service, not undifferentiated good
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Generation Availability Curve

� Generator has random supply S

� Generation availability curve

− Pr {S ≥ s} = ρ
− Constructed from historical

data

� ex: 100 MW wind farm

− 30% of the time, S > 60 MW
− 70% of the time, S > 30 MW

reliability ρ

p
ow

er
S

0

100

0 10.3

60

0.7

30

Pr {S ≥ s} = ρ

� How can we sell this random supply?
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Reliability Differentiated Contracts: Supply

� Product sold: (s, ρ, π)

− power s with prob > ρ
at price π

− menu of products:
M = {sk , ρk}

reliability ρ 0.99 0.75 0.5

price π ($/KWh) 0.39 0.23 0.12
reliability ρ

pr
ic

e
π

0 10.5 0.75

0.12

0.23

0.39

� Supplier sells lower reliability ρ at lower price π
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Reliability Differentiated Contracts: Demand

� Consumer purchase

− Buy power d with reliability > ρ
− Represent by rectangle R(d , ρ)

� Balancing supply and demand

− rectangles must not overlap
− must place R(d , ρ) below

generation availability curve

� Theorem: ∃ equib prices that fill
available supply

� Drawbacks

− Difficult to audit
− Consumers must plan consumption

with uncertain supply

0

100

0 1reliability ρ

p
ow

er
S

ρ
d
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Duration Differentiated Contracts

� Consider generation for next 24 hrs

� Idea: sell slices (x , h) of x MW for h hrs

� Availability period is chosen by supplier

� Issues

− Supply is random
− Auditing is easy
− Consumers must plan consumption

with uncertain supply

� Negrete-Pincetic, Poolla, Varaiya [2013]

0

100

0 24time t

p
ow

er
S
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Adequacy

� Consumer purchase

− (xk , hk), k = 1 · · · n
− hk sorted in descending order
− Assume xk = 1,∀k

� Is the available generation adequate?

� Idea: generation duration curve G (h)
(sorted supply curve)

� Theorem: Generation is adequate ⇐⇒

j∑
1

G−1(k) ≥
j∑
1

hk for j = 1 · · · n

0

100

0 24duration h

p
ow

er
G
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Contract Pricing

� How should we price (xk , hk)?

� Prices serve to balance supply and demand

� Approach

− identical consumers
− consumer utility u(h, x) = h · b(x)− xp, b is concave
− supplier utility

v =
∑
k

pkxk − `(x , h)

− two player game for each commodity

� Theorem: ∃ equib prices that fill available supply

� Open problem: dealing with randomness in supply G (h)
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A Vision of Grid 2050
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Grid2020 vs Grid2050

� > 30% renewables, mainly in distribution system

� reduces need for investing in high-voltage transmission infrastructure

� power generated and consumed locally

� core grid diminishes in function

� DERs organised into resource clusters
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The GRIP Architecture

GRids with Intelligent Periphery

� Resource clusters: storage, micro-generation, flexible loads

− likely to be below a large (100 MW) substation
− because of constraints: voltage support, phase balance

� Cluster manager conducts coordinated aggregation

− ex ante represents aggregated resource capability to system
operator

− ex post coordinates resources to deliver services
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Necessary Technology

� Many critical problems:

− Power quality and reliability
− Feeder automation
− Monitoring and protection

� Need common technology infrastructure:

− Programmable switches [ex: many vendors]
− Novel, inexpensive sensors/actuations [ex: Varentek]
− Communication and computation [ex: internet-of-things]
− Inter-operability standards [ex: OpenADR]

A $200B market opportunity
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Future Energy Systems: Players
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Innovation at the Periphery

� Why the periphery? lower regulatory hurdles

� Obstacles

− Complexity: 106 devices to be controlled!
− Architecture: appropriate degree of decentralization?
− Trust: will control make things worse? ex: IEEE Standard 1547
− Who is responsible for reliability?

� Key innovations from: control, modeling, optimization

− Our community has a vital role to play
− The problems are of a scale and importance like no other ...
− Seize the day !!
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stay hungry, stay foolish

Thank You!

Kameshwar Poolla
poolla@berkeley.edu
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