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Deentralised and distributed ontrol

Cyber-physial system:
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Deentralised and distributed ontrol

Whih information is neessary to solve a ontrol task?

Topology: Whih information links are neessary?

Quality: Whih auray of information is neessary?

Temporal aspet: How quikly has information to be

ommuniated?
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Deentralised and distributed ontrol

Deentralised ontrol system:

1. What are the onsequenes of strutural onstraints of

the ontroller?

→ Deentralised stabilisability

2. How to design deentralised ontrollers?

→ Struturally onstrained ontrollers
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Deentralised and distributed ontrol

Multi-agent system:

N e t w o r k e d  c o n t r o l l e r

P 1 P 2 P N

C 1 C 2 C N

�  

3. How to hoose the information struture of distributed

ontrollers?
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Part I:

Deentralised stabilisability

Models of interonneted systems

Deentralised and distributed ontrollers

Deentralised �xed modes

Struturally �xed modes
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Models of interonneted systems
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Models of interonneted systems

Unstrutured model:

Σ :

{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)
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Models of interonneted systems

I/O-oriented model:

Σ :

{

ẋ(t) = Ax(t) +
∑N

i=1 bsiui(t), x(0) = x0

yi(t) = cTsix(t), i ∈ N = {1, 2, ..., N}
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Models of interonneted systems

Interation-oriented model:

Σi :







ẋi(t) = Aixi(t) + biui(t) + eisi(t), xi(0) = xi0

zi(t) = cTzixi(t)

yi(t) = cTi xi(t)

Couplings: s(t) = Lz(t)
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Models of interonneted systems

Relation between the interation-oriented model and the

unstrutured model for

L =








0 l12 ... l1N
l21 0 l2N
.

.

.

.

.

.

lN1 lN2 0








Unstrutured model:

Σ :

{

ẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx(t)

with

B = diag bi, C = diag cTi

A =







A1 e1l12c
T
z2 ... e1l1Nc

T
zN

e2l21c
T
z1 A2 e2l2Nc

T
zN

.

.

.

.

.

.
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Models of interonneted systems

Relation between the interation-oriented model and the

unstrutured model for

L =








0 l12 ... l1N
l21 0 l2N
.

.

.

.

.

.

lN1 lN2 0








A =








A1 e1l12c
T
z2 ... e1l1Nc

T
zN

e2l21c
T
z1 A2 e2l2Nc

T
zN

.

.

.

.

.

.

eN lN1c
T
z1 eN lN2c

T
z2 AN
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Deentralised and distributed

ontrollers
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Deentralised and distributed ontrollers

Centralised ontroller:

C : u(t) = −Ky(t)
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Deentralised and distributed ontrollers

C : u(t) = −










k1 0 0 ... 0

0 k2 0 ... 0

0 0 k3 0

.

.

.

.

.

.

.

.

.

0 0 0 kN










y(t)
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Deentralised and distributed ontrollers

Centralised ontroller: K =








k11 k12 ... k1N
k21 k22 ... k2N
.

.

.

.

.

.

.

.

.

kN1 kN2 ... kNN








Deentralised ontroller: K =










k1 0 0 ... 0

0 k2 0 ... 0

0 0 k3 0

.

.

.

.

.

.

.

.

.

0 0 0 kN










Distributed ontroller: K =










k11 0 k13 ... 0

k21 k22 0 k2N
0 k32 k33 0

.

.

.

.

.

.

kN1 0 kN3 kNN
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Deentralised and distributed ontrollers

Struturally onstrained ontrollers

[K] denotes the struture matrix of K:

[K] =










∗ 0 ∗ ... 0

∗ ∗ 0 ... ∗
0 ∗ ∗ 0

.

.

.

.

.

.

.

.

.

∗ 0 ∗ ∗
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Deentralised and distributed ontrollers

Struturally onstrained ontrollers:

u(t) = −Ky(t)

with

K ∈ K = {[K] = SK}
↑
given struture matrix
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Deentralised �xed modes

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Deentralised �xed modes

I/O-oriented plant model:

Σ :

{

ẋ(t) = Ax(t) +
∑N

i=1 bsiui(t)

yi(t) = cTsix(t), i ∈ N

Deentralised ontroller:

ui(t) = −kiyi(t)

Problem:

Under what onditions do feedbak gains ki, (i ∈ N ) exist
suh that the losed-loop system is asymptotially stable?

Σ̄ :

{

ẋ(t) = (A−B · diag (ki) ·C)x(t)

yi(t) = cTsix(t), i ∈ N
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Deentralised �xed modes

S

u y
C

Answer for entralised ontroller: u(t) = −Ky(t)

An eigenvalue λ ∈ σ(A) is not ontrollable and observable

⇔ It annot be moved by stati output feedbak K

⇔ It annot be plaed by dynami output feedbak K
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Deentralised �xed modes

De�nition

The elements of the set

Λ =
⋂

K ∈ R
N×N

σ(A−BKC)

are said to be �xed modes (or �xed eigenvalues).

Λ is the set of unontrollable or unobservable eigenvalues of

A:

Λ =

{

λ

∣
∣
∣
∣
rank(λI −A B) < n or rank

(
λI −A

C

)

< n

}
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Deentralised �xed modes

Consequenes:

If Λ = ∅: all eigenvalues an be moved by stati feedbak

all eigenvalues an be plaed by dynami

feedbak

If Re(λ) < 0 for all λ ∈ Λ, the plant is stabilisable.

If ∃λ ∈ Λ : Re(λ) ≥ 0, the plant is not stabilisable.
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Deentralised �xed modes

u 1
y 1 u 2

y 2 u N
y N

. . .

S

C 1 C 2 C N

What are the onsequenes of the strutural onstraints on

the ontroller?

K ∈ K = {diag (ki) | ki ∈ R, i ∈ N}
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Deentralised �xed modes

De�nition

The elements of

Λd =
⋂

K ∈ K

σ(A−BKC)

are said to be deentralised �xed modes (or deentralised

�xed eigenvalues).

Restrit the onsideration to stati feedbak.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Deentralised �xed modes

Under what onditions do deentralised �xed modes exist?

Λd 6= ∅

Theorem

λ ∈ σ(A) is a deentralised �xed mode of Σ
⇐⇒

∃D,H : rank

(
λI −A BD

CH O

)

< n.

Why?
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Deentralised �xed modes

Preliminary results:

As K ⊆ R
N×N

: Λd ⊇ Λ.

→ Assumption:

Σ is ompletely ontrollable and ompletely observable.
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Deentralised �xed modes

Preliminary results:

If Σ is ontrollable and observable through a single

hannel (uk, yk), no deentralised �xed modes exist:

rank(λI −A bsk) = n

rank

(
λI −A

cTsk

)

= n
∀λ ∈ σ(A)







=⇒ Λd = ∅.
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Deentralised �xed modes

λ ∈ σ(A) an be a deentralised �xed mode only if it is not

simultaneously ontrollable and observable through any

hannel (ui, yi)

∀i ∈ N :







Either rank(λI −A bsi) < n

or rank

(
λI −A

cTsi

)

< n
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Deentralised �xed modes

rank(λI −A BD) < n

rank

(
λI −A

CH

)

< n

Complementary system:

ΣC :

{

ẋ(t) = Ax(t) +BDuD(t)

yH(t) = CHx(t)
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Deentralised �xed modes

λ annot be made ontrollable through uD(t) if

rank (λI −A+BHKHCH BD) < n for all KH

(λI −A+BHKHCH BD) =

(I O)

(
I BHKH

O I

)(
λI −A BD

CH O

)
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Deentralised �xed modes

Theorem (Anderson, Clements, 1981)

λ ∈ σ(A) is a deentralised �xed mode of Σ
⇐⇒

∃D,H : rank

(
λI −A BD

CH O

)

< n.

Λd =

{

λ

∣
∣
∣
∣
∃D,H : rank

(
λI −A BD

CH O

)

< n

}

for entralised ontrol:

Λ =

{

λ

∣
∣
∣
∣
rank(λI −A B) < n or rank

(
λI −A

C

)

< n

}
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Deentralised �xed modes

Example:

Σ :







ẋ(t) =





−1 2 3
0 −2 4
0 0 −3



x(t) +





1 0
0 0
0 1





(
u1(t)
u2(t)

)

(
y1(t)
y2(t)

)

=

(
1 0 0
0 0 1

)

x(t)

Σ is ompletely ontrollable and ompletely observable.
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Deentralised �xed modes

Example

Σ :







ẋ(t) =





−1 2 3
0 −2 4
0 0 −3



x(t) +





1 0
0 0
0 1





(
u1(t)
u2(t)

)

(
y1(t)
y2(t)

)

=

(
1 0 0
0 0 1

)

x(t)

For λ = −2, D = {1} and H = {2}:

rank

(
λI −A bs1

cTs2 0

)

= rank







−1 −2 −3 1
0 0 −4 0
0 0 1 0
0 0 1 0







= 2 < 3

Hene, λ = −2 is a deentralised �xed eigenvalue.
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Struturally �xed modes
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Struturally �xed modes

Aim:

Can we derive onditions on the struture of the system for

the existene of �xed modes?

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Struturally �xed modes

System struture:

Struture matries:

[A] =





∗ ∗ ∗
0 ∗ ∗
0 0 ∗



 , [B] =





∗ 0
0 0
0 ∗



 , [C] =

(
∗ 0 0
0 0 ∗

)
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Struturally �xed modes

For given struture matries SA, SB, SC, onsider the lass

of systems

S(SA,SB,SC) = {(A,B,C) | [A] = SA, [B] = SB, [C] = SC}

De�nition

S is said to have struturally �xed modes if every system

(A,B,C) ∈ S has �xed modes:

Λd =
⋂

K ∈ K

σ(A−BKC) 6= ∅.
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Struturally �xed modes

Centralised ontrol:

K = R
N×N

:

S has struturally �xed modes

⇔
No system (A,B,C) ∈ S is ontrollable and observable.

⇔
S is not struturally ontrollable or not struturally

observable.
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Struturally �xed modes

Struture graph of S (plant)
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Struturally �xed modes

Struture graph of S̄ (losed-loop system)
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Struturally �xed modes

Theorem

S has struturally �xed modes for K = R
N×N

⇔
at least one of the following onditions is satis�ed:

S is either not input onnetable or not output

onnetable.

For S̄ there does not exist a yle family of width n.
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Struturally �xed modes

S is input onnetable (input reahable):

There exist paths from the inputs ui towards all state

variables xi
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Struturally �xed modes

S is output onnetable (output reahable):

There exist paths from all state variables xi to at least

one output yi
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Struturally �xed modes

S̄ has a yle family of width n

Cyle family = set of yles without ommon vertex

Width of yle family = number of state verties

inluded
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Struturally �xed modes

Result: S does not have struturally �xed modes for

entralised ontrol.
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Struturally �xed modes

Extension to struturally onstrained ontrollers:

Theorem

S has struturally �xed modes

⇔
at least one of the following onditions is satis�ed:

In S, there exists a state vertex that is not onnetable

to a hannel.

In S̄, there does not exist a yle family of width n.
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Struturally �xed modes

x2 is not onnetable to a hannel

Hene, S has struturally �xed modes for deentralised

ontrol
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Struturally �xed modes

... with new edge:

x2 is now onnetable to the hannel (u1, y1)

There exists a yle family of width n = 3.

Hene, no struturally �xed modes exist.
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Struturally �xed modes

... with new edge:

There exists a yle family of width n = 3.

Hene, no struturally �xed modes exist.
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Summary
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Summary

Strutural onstraints on the ontroller make it �more

di�ult� to ontrol a systems:

A plant may possess �xed modes with respet to the

strutural onstraints, although it is ontrollable and

observable by entralised ontrol.

Strutural onditions show the onsequenes of

strutural onstraints in K
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Summary

Strutural onditions show the onsequenes of strutural

onstraints in K:

The state verties have to be onnetable to a hannel.

The yle family has to exist in the graph S̄, whih
depends upon K.

Struturally �xed modes exist ⇒ Fixed modes exist

6⇐
Fixed modes may exist

for spei� parameters
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Summary
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Part II:

Design of deentralised ontrollers

Optimal deentralised ontrol

Diret Nyquist Array Method for designing

deentralised ontrollers

Example: Deentralised voltage ontrol of an eletri

power system

Extensions

Summary
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Optimal deentralised ontrol
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Optimal deentralised ontrol

u 1
y 1 u 2

y 2 u N
y N

. . .

S

C 1 C 2 C N

I/O-oriented plant model:

Σ :

{

ẋ(t) = Ax(t) +
∑N

i=1 bsiui(t), x(0) = x0

yi(t) = cTsix(t), i ∈ N

Find a deentralised ontroller

Ci : ui(t) = −kiyi(t)

suh that J =

∫ ∞

0

xT(t)Qx(t) + uT(t)Ru(t) dt → min
k1,...,kN
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Optimal deentralised ontrol

Optimal deentralised feedbak:

u 1
y 1 u 2

y 2 u N
y N

. . .

S

C 1 C 2 C N

min
K ∈ K

J̄ with J̄ = trP

and

(A−BKC)TP +P (A−BKC)+CTKTRKC+Q = O
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Optimal deentralised ontrol

Optimal deentralised feedbak:

u 1
y 1 u 2

y 2 u N
y N

. . .

S

C 1 C 2 C N

Neessary optimality ondition:

dJ̄

dK
= 0
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Optimal deentralised ontrol

Optimal deentralised feedbak:

u 1
y 1 u 2

y 2 u N
y N

. . .

S

C 1 C 2 C N

Neessary optimality onditions: (Levine, Athans, 1970)

K = R−1BTPLCT(CLCT)−1

O = (A−BKC)TP + P (A−BKC) +CTKTRKC +Q

O = (A−BKC)L+L(A−BKC)T + I
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Optimal deentralised ontrol

Iterative solution: for ui(t) = −kT
i xi(t)

Given: stabilising deentralised feedbak K0 = diag kT
i

0

k = 0

1

Find P k+1
and Lk+1

for Kk

2

Determine

dJ̄
dK

= 2(RKkC −BTP k+1)Lk+1CT

3

Put the diagonal elements of

dJ̄
dK

into the matrix Dk+1

4

Determine a step size sk+1
suh that

J̄(Kk − sk+1Dk+1

︸ ︷︷ ︸

= Kk+1

) < J̄(Kk)

5

If ‖Dk+1‖ < ǫ, stop;

otherwise k = k + 1, repeat from Step 1.
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Optimal deentralised ontrol

Properties of this iterative solution:

(Geromel, Bernussou, 1979)

In eah step, the performane J̄ is improved.

If initialised with a stabilising feedbak K0
, eah

ontroller Kk
is a stabilising deentralised ontroller.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Optimal deentralised ontrol

Evaluation:

For the initialisation of the algorithm, a stabilising

deentralised feedbak K0
has to be found.

This is a entralised design method.

Better design methods:

a) Hierarhial design methods (f. hierarhial

optimisation)

b) Deentralised design methods
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Diret Nyquist Array Method

for designing deentralised ontrollers
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Diret Nyquist Array Method

Idea:

Consider weakly oupled subsystems.

Design the ontrol stations for the isolated subsystems.

Chek onditions under whih this deentralised ontroller

�works�?

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Diret Nyquist Array Method
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Diret Nyquist Array Method

Σ :

(
Y1(s)
Y2(s)

)

=

(
G11(s) G12(s)
G21(s) G22(s)

)(
U1(s)
U2(s)

)

Ci : Ui(s) = −Ki(s)(Yi(s)−Wi(s)), i = 1, 2.

Design the ontrol stations Ki(s) separately for the isolated

subsystems

Σi : Yi(s) = Gii(s)Ui(s)

so as to satisfy loal requirements.
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Diret Nyquist Array Method

Closed-loop system with deentralised ontroller:

Σ̄ :

(
Y1(s)
Y2(s)

)

= G0(s)(I −G0(s))
−1

(
W1(s)
W2(s)

)

with

G0(s) =

(
K1(s)G11(s) K1(s)G12(s)
K2(s)G21(s) K2(s)G22(s)

)

Under what onditions are the ouplings G12(s), G21(s)
�weak�?
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Diret Nyquist Array Method

Stability analysis of the overall system:

by means of the Nyquist riterion

F (s) = I +G0(s) =

(
1 +K1(s)G11(s) K1(s)G12(s)
K2(s)G21(s) 1 +K2(s)G22(s)

)

Assumptions:

G(s) is asymptotially stable.

All isolated losed-loop subsystems are asymptotially

stable.
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Diret Nyquist Array Method

Stability analysis of the overall system:

by means of the Nyquist riterion

F (s) = I +G0(s) =

(
1 +K1(s)G11(s) K1(s)G12(s)
K2(s)G21(s) 1 +K2(s)G22(s)

)

Under what onditions an the ross-ouplings

G21(s), G12(s) not hange the enirlement of the origin by

detF (s) (�weak ouplings�)?
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion:

As

detF (s) =

m∏

i=1

λFi(s)

with

det (λFi(s)I − F (s)) = 0

we get

∆arg detF (s) =
m∑

i=1

∆arg λFi(s)
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

Su�ient stability ondition:

∆arg λFi(s) = ∆arg(1 +Ki(s)Gii(s))

= ∆argFii(s), i ∈ N

for

F (s) =

(
F11(s) F21(s)
F12(s) F22(s)

)
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

R e

I m

r
1

a
1 1

r
2

a
2 2

a
3 3

r
3

Gershgorin's Theorem:

|λFi(s)− Fii(s)| ≤
m∑

j=1,j 6=i

|Fij(s)| = Di(s)
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

I m

R e

F
i i
( j w )

 D
i
( j w )  <  | F

i i
( j w ) |

s  Î  D

F
i i
( j w )

The ouplings Fij(s) do not

hange the enirlement of the

origin if

|Fii(s)| >
m∑

j=1,j 6=i

|Fij(s)| for s ∈ D
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

De�nition (Rosenbrok 1974)

F (s) is said to be diagonal dominant if

|Fii(s)| >
m∑

j=1,j 6=i

|Fij(s)| for s ∈ D, i ∈ N

Theorem

G0(s) � stable

∆arg(1 +Ki(s)Gii(s)) = 0

Then the deentralised ontrol system is stable if F (s) is
diagonal dominant.
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

Reformulation of the theorem for SISO subsystems:

- 1
R e

I m

G
0 i
( j w )

D
i
( j w )

w

G0i(jω) = Ki(jω)Gii(jω)

If F (s) is diagonal dominant,

the Gershgorin bands do not

inlude the point −1
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

Consequenes:

Diagonal dominane determines what the attribute

�weak ouplings� mean.

�Weakness� of ouplings depend upon the ontrollers

Ki(s) used.

F (s) =

(
1 +K1(s)G11(s) K1(s)G12(s)
K2(s)G21(s) 1 +K2(s)G22(s)

)
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Diret Nyquist Array Method

Reformulation of the Nyquist riterion

Extension:

If F (s) is diagonal dominant, stability is ensured even if

subsystems are swithed o� (integrity).

F (s) =





1 +K1(s)G11(s) O O

O 1 +K2(s)G22(s) K2(s)G23(s)
O K3(s)G32(s) 1 +K3(s)G33(s)
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Example:

Deentralised voltage ontrol

of an eletri power system
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Deentralised voltage ontrol
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Deentralised voltage ontrol

1. Design of the deentralised ontrol stations:

Ui(s) = −Ki(s)(Yi(s)−Wi(s))

with

Ki(s) =

(

1 +
2

s

)
1 + s

1 + 0.22s
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Deentralised voltage ontrol

1. Design of the ontrol stations

0

0.5

1

Tm = 0,9 s

 

hw in V

0 1 2 3 4 5
0
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6

t in s

u in V

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Deentralised voltage ontrol

2. Analysis of the overall losed-loop system:

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

Re

Im

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

Re

Im

Hene, the overall system is stable.
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Deentralised voltage ontrol

2. Analysis of the overall losed-loop system

Command step response matrix:
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Deentralised voltage ontrol

Summary of the Diret Nyquist Array Method:

1

Design ontrol stations Ki(s) for the isolated

subsystems Σi.

2

Evaluate the performane of the overall losed-loop

system:

Diagonal dominane of F (s) → stability, integrity

Evaluation:

+ Deentralised design

- Conservative analysis
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Extensions
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Extensions

Evaluation of the I/O behaviour

Idea: Consider the ouplings as model unertainties δGA(s):

d i a g  G
i i

w

f

y

u
d G

A

d i a g  K
i

δGA(s) =





O G12(s) G13(s)
G21(s) O G23(s)
G31(s) G32(s) O
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Extensions

u f

G
u f

d G
A

Guf(s) = −K(I + diag Gii(s)K)−1

= −diag
Ki(s)

1 +Gii(s)Ki(s)

δGA(s)Guf(s) = diag
1

Fii(s)





0 F12(s) F13(s)
F21(s) 0 F23(s)
F31(s) F32(s) 0
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Extensions

u f

G
u f

d G
A

Su�ient stability ondition

λP






diag

1

|Fii(s)|





0 |F12(s)| |F13(s)|
|F21(s)| 0 |F23(s)|
|F31(s)| |F32(s)| 0










< 1, s ∈ D

λP � Largest eigenvalue (�Perron root�)
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Extensions

F (s) is said to be generalised diagonal dominant, if

λP






diag

1

|Fii(s)|





0 |F12(s)| |F13(s)|
|F21(s)| 0 |F23(s)|
|F31(s)| |F32(s)| 0










< 1, s ∈ D

Hene, the overall system is stable if

all isolated losed-loop subsystems are stable

F (s) is generalised diagonal dominant
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Extensions

Evaluation of the I/O-behaviour:

d i a g  G
i i

w

f

y

u
d G

A

d i a g  K
i

Approximation by isolated subsystems:

Ŷi(s) =
Gii(s)Ki(s)

1 +Gii(s)Ki(s)
Wi(s)
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Extensions

Evaluation of the I/O-behaviour:

d i a g  G
i i

w

f

y

u
d G

A

d i a g  K
i

Approximation error bound

|Y (s)− Ŷ (s)| ≤ V (s)|W (s)|

with

V (s) = |Gyf(s)| |δGA(s)| (I − |Guf(s)| |δGA(s)|)
−1 |Guw(s)|
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Extensions

Example: Deentralised voltage ontrol

Change ontrol laws to

Ki(s) = 6

(

1 +
2

s

)
1 + s

0.22 s+ 1
.

10
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−100

−50

0
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V
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V
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Extensions

Example: Deentralised voltage ontrol

Command behaviour

10
−2

10
0

10
2

−60

0

20

ω in
rad

s

|Gw11| in dB
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Summary
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Summary

Strutural onstraints of the ontroller make the design

problem �di�ult�.

Centralised design methods (like optimal ontrol) do

not sale with the size of the plant.

Deentralised design methods are useful for �weakly

oupled� interonneted systems.
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Summary
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Part III:

Design of the information struture of networked

ontrollers

Information struture of networked ontrollers for

multi-agent systems

Results of Network Siene

Design method for the information struture of

networked ontrollers

Summary
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Information struture

of networked ontrollers
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Information struture of networked ontrollers

Leader-follower synhronisation

P 2P 1 P 3 5P N

C 1  C 2  C 3  C N  

C o m m u n i c a t i o n  n e t w o r k  K

N e t w o r k e d  c o n t r o l l e r

.  .  .

.  .  .

y r e f

P 0

y 1 y 2 y 3 y N
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Information struture of networked ontrollers

Synhronisation as a ontrol task

The overall system is said to be synhronised, if it satis�es

the following requirements:

Synhronous behaviour

(for spei� initial states xi0,xs0):

y1(t) = y2(t) = ... = yN(t) = yref(t) t ≥ 0,

Asymptoti synhronisation

(for all other initial states):

lim
t→∞

|yi(t)− yref(t)| = 0, i = 1, 2, ..., N.
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Information struture of networked ontrollers

Synhronisation as a ontrol task

Literature:

Peora, L. M.; Carroll, T. L.: Master stability

funtions for synhronized oupled systems, Physial

Review Letters 80 (1998)

Olfati-Saber, R.; Fax, J. A.; Murray, R. M.: Consensus

and ooperation in networked multi-agent systems,

Pro. of the IEEE 95 (2007)

Chen, G.; Duan, Z.: Network synhronizability

analysis: A graph-theoreti approah, Chaos 18 (2008)

Sardovi, L.; Sepulhre, R.: Synhronization in

networks of idential linear systems, Automatia 45

(2009)
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Information struture of networked ontrollers

Synhronisation as a ontrol task

Summary of results in literature:

The majority of papers is restrited to synhronisation as

an asymptoti property: limt→∞ |yi(t)− yref(t)| = 0.

This talk gives an answer to the question:

For whih information struture does the overall system

have a good transient behaviour?

Ji =

∫ ∞

0

|yref(t)− yi(t)| dt, i = 1, 2, , ..., N.
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Information struture of networked ontrollers

Example: Robot formation problem

1
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Information struture of networked ontrollers

Example: Robot formation problem

Di�erent information strutures:

0 1 2 3 4
y 1

5
y 3

y 4 y 5y r e f

y 2

y r e f

0 1 2 3 4
y 1 y 2

5
y 3 y 4 y 5y r e f
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y 1 y 2

5
y 3 y 4 y 5y r e f

y r e f

( c ) 0 1 2 3 4
y 1 y 2

5
y 3 y 4 y 5y r e f

y 2

y 1

Whih information struture leads to the best transient

behaviour?
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Information struture of networked ontrollers

New methodologial questions for the design of

networked ontrollers:

1

Whih additional information is neessary to improve

the performane of the losed-loop system?

2

How should additional information be utilised by the

ontroller?

3

Design of the information struture:

Whih ouplings among the ontrollers of the

subsystems should be used?
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Information struture of networked ontrollers

Two answers will be given in the following:

1

Network Siene shows that existing large networks

have a short harateristi path length.

2

A new strutural design method will be proposed that

uses a quantitative evaluation of the ommuniated

information for the losed-loop system performane.
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Results of Network Siene
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Results of Network Siene

Network Siene:

study of the network struture of existing large networks

Networks without hierarhy or oordinator:

Whih strutures appear as a result of

self-organisation?

Network dynamis:

How do networks develop aording to mirolevel

rules?
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Results of Network Siene

Some basis of graph theory:

Graph: G = (V, E) with

V � set of nodes

E � set of edges: E ⊆ V × V
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Results of Network Siene

Some basis of graph theory

Charateristi path length:

l̄ =
1

N

∑

i,j∈V

min
P (i,j)∈P(i,j)

|P (i, j)|

with

N � number of onneted node pairs,

P(i, j) � set of paths P (i, j) from i towards j.
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Results of Network Siene

Some basis of graph theory

Cluster oe�ient:

ci =
2ei

|Zi|(|Zi| − 1)

with ei = number of edges in Zi

(�How many friends of i are also

friends among eah other?�)
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Results of Network Siene

Three important properties of large existing

networks:

Small-world arhiteture

(�How small the world is!�)

Short harateristi path

length

Large lustering oe�ient

Sale-free networks

Power-law degree

distribution
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Results of Network Siene

Imitation of the dynamis of large existing

networks:

Network = dynami graph

G(t) = (V(t), E(t), J)

with

J � mirorules that govern the evolution of the graph

What are the mirorules J that bring about suh graphs?
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Results of Network Siene

Graphs between randomness and order

R a n d o m  g r a p h

Random graph: (Erdös, Renyi (1959))

Eah edge (i, j) exists with probability p.

Small harateristi path length l̄ ∼ log(N)

Small lustering oe�ient c = p
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Results of Network Siene

Graphs between randomness and order

R a n d o m  g r a p h R e g u l a r  g r a p h

Regular graph:

Eah node is onneted with k neighbours.

Large harateristi path length l̄ ∼ N

Large lustering oe�ient,

e. g. c ≈ 3
4
for k ≫ log(N)
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Results of Network Siene

Graphs between randomness and order

R a n d o m  g r a p h S m a l l - w o r l d  n e t w o r k R e g u l a r  g r a p h

R e - c o n n e c t  

s o m e  n o d e s

Small-world network:

A few shortuts redue the harateristi path

length onsiderably.
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Results of Network Siene

Graphs between randomness and order

R a n d o m  g r a p h S c a l e - f r e e  n e t w o r k S m a l l - w o r l d  n e t w o r k R e g u l a r  g r a p h

P r e f e r e n t i a l  

a t t a c h m e n t

R e - c o n n e c t  

s o m e  n o d e s

Sale-free networks:

Preferential attahment yields lusters

Power-law degree distribution
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Results of Network Siene

Network dynamis:

How do networks develop aording to mirolevel rules?

Phase transitions:

If the onnetivity of the graph exeeds a ritial value, new

network properties abruptly appear.
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Results of Network Siene

Example: Robot formation problem

1
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Results of Network Siene

Example: Robot formation problem

Transient behaviour with random additional

ommuniation
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Results of Network Siene

Example: Robot formation problem

Graph-theoreti analysis of the result
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Results of Network Siene

Summary:

Network Siene analyses omplex �stati� networks that

evolve without �xed organisational struture.

→ Networked ontrol systems:

Use ommuniation strutures with small harateristi

path length
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Design method

for the information struture

of networked ontrollers
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Communiation struture design

Control aim:

Synhronisation with short transient behavour

P 2P 1 P 3 5P N

C 1  C 2  C 3  C N  

C o m m u n i c a t i o n  n e t w o r k  K

N e t w o r k e d  c o n t r o l l e r

.  .  .

.  .  .

y r e f

P 0

y 1 y 2 y 3 y N
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Communiation struture design

Control aim:

Synhronisation with short transient behavour

Assumptions:

The leader presribes a pieewise onstant referene

trajetory:

yref(t) = w̄, t ≥ 0

The ommuniation is restrited to yle-free

strutures.

The agents may have individual dynamis:

Pi :

{

ẋi(t) = Aixi(t) + biui(t), xi(0) = xi0

yi(t) = cTi xi(t)
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Communiation struture design

Networked ontroller:

Ci : ui(t) = −ki

(
∑

j∈Pi

k̃ij(yi(t)− yj(t))

)

= −ki

(

yi(t)−
∑

j∈Pi

k̃ijyj(t)

︸ ︷︷ ︸

ysi(t)

)

, i = 1, 2, ..., N

with

∑

j∈Pi
k̃ij = 1.
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Communiation struture design

Controlled agent:

y i
y 1

y N

y r e f

.
 
.
 
.

å
ik i T

y s i _
~

Σ̄i :

{
ẋi(t) = Āixi(t) + b̄iysi(t), xi(0) = xi0

yi(t) = c̄Ti xi(t)

ysi(t) =
∑

j∈Pi

k̃ijyj(t)
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Communiation struture design

Synhronisability of the agents:

y i
y 1

y N

y r e f

.
 
.
 
.

å
ik i T

y s i _
~

Internal-referene priniple:

(Lunze, IEEE TAC 2012):

The step response h̄(t) of Σ̄i satis�es the ondition

lim
t→∞

h̄(t) = 1.
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Communiation struture design

Synhronisation ondition:

The overall system is asympotially synhronised, if

all ontrolled agents Σ̄i, (i = 1, 2, ..., N) are
asymptotially stable,

the ommuniation graph G is yle-free and inludes a

spanning tree with the root node 0.

The freedom in hoosing the ommuniation graph should

be used to make the transient behaviour as quik as

possible.
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Communiation struture design

Examples: Cyle-free ommuniation graphs that inlude

a spanning tree
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Communiation struture design

y i
y 1

y N

y r e f

D i

.
 
.
 
.

k i T
~ y s i

Main idea: Representation of the agent by a delay:

Di =

∫ ∞

0

(1− h̄i(τ)) dτ

with h̄i(t) denoting the step response of Σ̄i.
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Communiation struture design

Cumulative delay of a networked system:

(Lunze, Int. J. Control 2013)

y r e f

G 1 ( s )

G 2 ( s )

y 1

y s , m + 1y 2

G m ( s )

y m

G m + 1 ( s )

y m + 1

k i 1

k i 2

k i m

�

�

_

_

_

_

~

~

~

Di,ref = Dm+1 +

m∑

j=1

k̃ijDj,ref.
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Communiation struture design

D 1 D 1 + D 2 D 1 + D 2 + D 3

0 1 2 3 4 5

y r e f

y r e f

0 1 2 3 4 5

y r e f

D 1 + D 2 +

D 3 + D 4

D 1 + D 2 + D 3 +

D 4 + D 5

D 1 D 2 D 3 D 4 D 5
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Communiation struture design

0 1 2 3

4 5

y r e f  

0 1 2 3

4

D 1

5

y r e f  

0 1 2 3 4 5

y r e f  

D 1 + D 2 D 1 + D 2 + D 3

D 1
D 1 + D 4 D 1 + D 4 + D 5

D 1
D 1 + D 2

D 1 + D 2 + D 3

D 1

D 1 + D 2
D 1 + D 5 + 0 . 7 5 D 2

+ 0 . 5 D 4 + 0 . 2 5 D 3

D 1

D 1

D 1 + D 2

D 1 + D 3 D 1 + D 4

+ 0 . 5 ( D 2 + D 3 )

D 1 + D 4 + D 5 +

0 . 5 ( D 2 + D 3 )

D 1 + D 4

+ 0 . 5 ( D 2 + D 3 )
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Communiation struture design

Formalisation of the design problem:

Dcum =








D1,ref

D2,ref
.

.

.

DN,ref








and Dindiv =








D1

D2
.

.

.

DN








Dcum = K̃FDcum +Dindiv

Dcum =
(

I − K̃F

)−1

Dindiv
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Communiation struture design

Formalisation of the design problem:

Objetive funtion:

JOS(K̃F) = (1, 1, ... 1)
(

I − K̃F

)−1

Dindiv.

min
K̃F ∈ KF

JOS
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Communiation struture design

Example: Robot formation problem

yref(t) = w̄

1
2 3

4

y 2 y 3

y 4

0
y 1

y r e f
5

y 5

Control aims:

Asymptoti synhronisation: limt→∞ |w̄ − yi(t)| = 0

Good transient behaviour:

Ji =

∫ ∞

0

(w̄ − yi(t)) dt, i = 1, 2, , ..., N.
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Communiation struture design

Example: Robot formation problem

Two kind or robots:
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si in m

 

Dn =33.2135
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Communiation struture design

Example: Robot formation problem

Neighbouring ouplings:
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Communiation struture design

Example: Robot formation problem
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Communiation struture design

Example: Robot formation problem
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Summary
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Summary

Large networks are haraterised by short

harateristi path length.

For networked systems, the path length is the weighted

sum of the delay of the agents.

Quik transient behaviour of synhronised systems

our if the ommuniation struture leads to short

paths from the leader to the followers.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Summary

Literature (1):

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Summary

Literature (2):

Strogatz, S.:

SYNCHRON: Vom rätselhaften Rhythmus

der Natur,

Berlin-Verlag 2004.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Summary

Literature (3):

Lewis, T. G.:

Network Siene: Theory and Appliations,

J. Wiley & Sons, Hoboken 2009.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Summary

Literature (4):

Lunze, J. (Ed.):

Control Theory of Digitally Networked

Dynami Systems,

Springer-Verlag, Heidelberg 2013.

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013



Referenes

Lunze, J.: Synhronisable nodes in networked systems,

J. Phys. A: Math. Theor. 44 (2011) 045103.

Lunze, J.: Synhronization of heterogeneous agents,

IEEE Trans. on Autom. Contr. AC-57 (2012),

pp. 2885-2890.

Lunze, J.: A method for designing the ommuniation

struture of networked ontrollers,

Intern. J. of Control, 2013.

www.atp.rub.de

J. Lunze: "`Deentralised and distributed ontrol"', 5-th HYCON PhD-Shool, Lua, July 2013


