

Application Areas

UC SANTA BARBARA engineering

Robotic agents free humans from unpleasant, dangerous, and/or repetitive tasks in which human performance would degrade over time due to fatigue

Efficiency and safety in cars depend on a network of hundreds of ECUs (power train, ABS, stability control, speed control, transmission, ...)

Buildings consume 72% of electricity, 40% of all energy, and produce close to 50% of U.S. carbon emissions

Digital Control Systems

UC SANTA BARBARA engineering

UC SANTA BARBARA Non-uniform Sampling/Delays engineering Q Uniform sampling cannot be guaranteed (packet drops, clock synchronization, ...) *Q* Different samples may experience different delays ♀ Difficult to decouple continuous plant from discrete events (sampling, drops, ...) Rear-right sensor/actuator Front-right nsor/actuator Controller Node 5 Node 1 Node 7 Network Node 4 Node 2 Node 3 Front-left Roll and pitch Heave position Rear-left sensor/actuator sensor angle sensor sensor/actuator $\mathbf{\tau}_1$ τ2 y(t)u(t)s₂ s₃ s_1 Н Plant S time s_1 s_2 s_3 s_4 Network variable packet drops delays C Controller u_k y_k s_1 s_3 s_4 s_1 s3 s4

Course Overview

Lecture #1: Modeling Framework – Hybrid Dynamical Systems (Deterministic, Stochastic, Impulsive)

Lecture #2: Analysis of Stochastic Hybrid Systems (Generator, Lyapunov-based Methods)

(extra material): NCS Protocol Design (Medium Access, Transport, Routing)

> Lecture #1 Modeling Framework: Hybrid Dynamical Systems

Lecture #1 Outline

- Deterministic Hybrid Systems (DHSs)
- Stochastic Hybrid Systems (SHSs)
- ♀ Simulation of SHSs
- **Q** SHSs Driven by Renewal Processes

Main references: Davis, "Markov Models and Optimization" Chapman & Hall,1993 Cassandras, Lygeros, "SHSs" CRC Press 2007 Hespanha, "A Model for SHSs with Application ..." Nonlinear Analysis 2005.

UC SANTA BARBARA

Deterministic Hybrid Systems

UC SANTA BARBARA engineerii

congestion control \equiv selection of the rate *r* at which the server transmits packets feedback mechanism \equiv packets are dropped by the network to indicate congestion

TCP (Reno) congestion control: packet sending rate given by

$$r(t) = \frac{w(t)}{RTT(t)}$$
 round-trip-time (from server to client and back)

• initially w is set to 1

• until first packet is dropped, w increases exponentially fast (slow-start)

• after first packet is dropped, w increases linearly (congestion-avoidance)

• each time a drop occurs, w is divided by 2 (multiplicative decrease)

Example #2: TCP Congestion Control

UC SANTA BARBARA

• each time a drop occurs, w is divided by 2 (multiplicative decrease)

Example #2: TCP Congestion Control

queue (temporary data storage) r bps rate $\leq B$ bps $s(t) \equiv$ queue size $s = s_{\max}, r > B$? $w \mapsto 1$ $s\mapsto 0$ slow-start cong-avoid $\dot{w} = \frac{\log 2}{RTT} w$ $\dot{w} = \frac{1}{RTT}$ $\dot{s} = r - B$ $\dot{s} = r - B$ $w \mapsto \frac{w}{2}$ $w \mapsto \frac{w}{2}$ $s = s_{\max}, r > B$?

UC SANTA BARBARA

engineerin

Stochastic Hybrid Systems

UC SANTA BARBARA

Example #2.1: TCP Congestion Control

UC SANTA BARBARA

enaineerina

- until first packet is dropped, w increases exponentially fast (slow-start)
- after first packet is dropped, w increases linearly (congestion-avoidance)
- each time a drop occurs, w is divided by 2 (multiplicative decrease)

Lecture #1 Outline

- **Q** Deterministic Impulsive Systems (DISs)
- **Q** Deterministic Hybrid Systems (DHSs)
- **Q** Stochastic Hybrid Systems (SHSs)
- **Q** Simulation of SHSs
- **Q** SHSs Driven by Renewal Processes

Numerical Simulation of SISs

 $x \mapsto \phi(x)$

 $\lambda(x)dt$

 $\dot{x} = f(x)$

UC SANTA BARBARA engineering

1. Initialize state:

here we take x₀ as a given parameter

$$x(t_0) = x_0 \quad k = 0$$

2. Draw a unit-mean exponential random variable

$$E \sim \exp(1)$$

3. Solve ODE

$$\dot{x} = f(x) \quad x(t_k) = x_k \quad t \ge t_k$$

until time t_{k+1} for which

$$\int_{t_k}^{t_{k+1}} \lambda(x(t)) dt \ge E$$

4. Apply the corresponding reset map

$$x(t_{k+1}) = x_{k+1} := \phi(x^-(t_{k+1}))$$

set k = k + 1 and go to 2.

UC SANTA BARBARA Numerical Simulation of SISs here we take x₀ as a given parameter 1. Initialize state: $x(t_0) = x_0 \quad k = 0$ $\lambda(x)dt$ $\dot{x} = f(x)$ 2. Draw a unit-mean exponential random variable $E \sim \exp(1)$ 3. Solve ODE $\dot{x} = f(x)$ $x(t_k) = x_k$ $t > t_k$ until time t_{k+1} for which $\int_{t}^{t_{k+1}} \lambda(x(t)) dt \ge E$ This algorithm is "exact" modulo: errors in extracting realizations Apply the corresponding reset map of exponential random variables $x(t_{k+1}) = x_{k+1} := \phi(x^-(t_{k+1}))$ Implementation of the second s Inumerical errors in "zeroset k = k + 1 and go to 2. crossing" detection overall very accurate...

Stochastic Impulsive Systems

UC SANTA BARBARA enaineerir

UC SANTA BARBARA

enaineerina

Numerical Simulation of SISs

 $x \mapsto \phi_3(x)$

1. Initialize state:

$$x(t_0) = x_0 \quad k = 0$$

2. Draw one independent exponential random variable (unit mean) per transition

$$E_1, E_2, E_3 \sim \exp(1)$$

3. Solve ODE

$$\dot{x} = f(x) \quad x(t_k) = x_k \quad t \ge t_k$$

until time t_{k+1} for which

$$\int_{t_k}^{t_{k+1}} \lambda_\ell(x(t)) dt \ge E_\ell$$

for some transition ℓ^* .

4. Apply the corresponding reset map ℓ^*

$$x(t_{k+1}) = x_{k+1} := \phi_{\ell^*}(x^-(t_{k+1}))$$

set
$$k = k + 1$$
 and go to 2.

Numerical Simulation of SISs

UC SANTA BARBARA

 $x \mapsto \phi_3(x)$

 $\lambda_1(x)dt$

 $x \mapsto \phi_3(x)$

Under appropriate (mild) assumptions this procedure results in a

(strong) Markov Process x(t)

However...

 $\lambda_3(x)dt$

1. Initialize state:

$$x(t_0) = x_0 \quad k = 0$$

2. Draw one independent exponential random variable (unit mean) per transition

$$E_1, E_2, E_3 \sim \exp(1)$$

3. Solve ODE

$$\begin{cases} \dot{x} = f(x) & x(t_k) = x_k \\ \dot{m}_1 = \lambda_1(x) & m_1(t_k) = 0 \\ \dot{m}_2 = \lambda_2(x) & m_2(t_k) = 0 \\ \vdots & \vdots \end{cases} \quad t \ge t_k$$

until time t_{k+1} for which

$$m_\ell(t_{k+1}) \ge E_\ell$$

for some transition ℓ^* .

4. Apply the corresponding reset map ℓ^*

$$x(t_{k+1}) = x_{k+1} := \phi_{\ell}(x^{-}(t_{k+1}))$$

set
$$k = k + 1$$
 and go to 2.

Numerical Simulation of SISs

 $x \mapsto \phi_1(x)$

 $x \mapsto \phi_2(x)$

 $\dot{x} = f(x)$

 $\lambda_2(x)dt$

UC SANTA BARBARA enaineerin

1. Initialize state:

$$x(t_0) = x_0 \quad k = 0$$

2. Draw one independent exponential random variable (unit mean) per transition

$$E_1, E_2, E_3 \sim \exp(1)$$

3. Solve ODE

$$\begin{cases} \dot{x} = f(x) & x(t_k) = x_k \\ \dot{m}_1 = \lambda_1(x) & m_1(t_k) = 0 \\ \dot{m}_2 = \lambda_2(x) & m_2(t_k) = 0 \end{cases} \quad t \ge t_k$$

until time t_{k+1} for which

$$m_\ell(t_{k+1}) \ge E_\ell$$

for some transition ℓ^* .

4. Apply the corresponding reset map ℓ^*

$$x(t_{k+1}) = x_{k+1} := \phi_{\ell}(x^-(t_{k+1}))$$

set k = k + 1 and go to 2.

In either case, "bad things can happen" with nonzero probability. and go to 2.

back to Stochastic Hybrid Systems ...

UC SANTA BARBARA

engineerir

Generalizations

2. Stochastic resets can be obtained by considering multiple intensities/reset-maps

$$\begin{array}{c} p\lambda(x)dt & x \mapsto \varphi_1(x) \\ \hline q = 1 \\ \dot{x} = f(1,x) \\ \hline (1-p)\lambda(x)dt & x \mapsto \varphi_2(x) \end{array} \right) \qquad x \mapsto \begin{cases} \varphi_1(x) & \text{w.p. } p \\ \varphi_2(x) & \text{w.p. } 1-p \\ \hline \varphi_2(x) & \text{w.p. } 1-p \end{cases}$$

One can further generalize this to resets governed by a continuous distribution $x \sim \mu(q, x, dx)$

UC SANTA BARBARA

enaineerina

Lecture #1 Outline

- **Q** Deterministic Impulsive Systems (DISs)
- **Q** Deterministic Hybrid Systems (DHSs)
- **Q** Stochastic Hybrid Systems (SHSs)
- **♀** Simulation of SHSs

Time-triggered SIS

$$\begin{array}{c} t_k \\ \dot{x} = f(x) \end{array} x \mapsto \phi(x)$$

Suppose $t_{k+1} - t_k \sim i.i.d.$, with cumulative distribution function $F(\cdot)$ Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ?

UC SANTA BARBARA

enaineerin

Time-triggered SIS

Suppose $t_{k+1} - t_k \sim i.i.d.$, with cumulative distribution function $F(\cdot)$ Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ?

UC SANTA BARBARA

UC SANTA BARBARA

Recall:

$$P\left(\underset{k+1 \leq t+dt}{\operatorname{jump in}} \mid t_k, x(t_k), \operatorname{no jump in} [t_k, t]\right) \xrightarrow{dt \to 0} \lambda_\ell(x(t))dt$$

$$P\left(t < t_{k+1} \leq t+dt \mid t_k, x(t_k), t_{k+1} > t\right) \qquad \text{hazard rate}$$

$$= \frac{F(t+dt-t_k) - F(t-t_k)}{1 - F(t-t_k)} \xrightarrow{dt \to 0} \frac{F'(t-t_k)}{1 - F(t-t_k)}dt$$

Time-triggered SIS

Suppose $t_{k+1} - t_k \sim i.i.d.$, with cumulative distribution function $F(\cdot)$ Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ?

Recall:

$$P\left(\underset{k+1 \leq t+dt}{\operatorname{jump in} (t,t+dt] \mid t_k, x(t_k), \text{ no jump in} [t_k,t]}\right) \xrightarrow{dt \to 0} \lambda_\ell(x(t))dt$$

$$P\left(t < t_{k+1} \leq t+dt \mid t_k, x(t_k), t_{k+1} > t\right) \qquad \text{hazard rate}$$

$$= \frac{F(t+dt-t_k) - F(t-t_k)}{1 - F(t-t_k)} \xrightarrow{dt \to 0} \frac{F'(t-t_k)}{1 - F(t-t_k)}dt$$

$$P\left(\underset{k+1 \leq t+dt \mid t_k, x(t_k), \text{no jump in } [t_k, t]}{\text{P}\left(t < t_{k+1} \leq t+dt \mid t_k, x(t_k), t_{k+1} > t\right)} \xrightarrow{\text{hazard rate}} \left\{ \frac{F(t+dt-t_k) - F(t-t_k)}{1 - F(t-t_k)} \xrightarrow{dt \to 0} \frac{F'(t-t_k)}{1 - F(t-t_k)} dt \right\}$$

Lecture #2 Outline

- **Q** Infinitesimal Generator and Dynkin's Formula
- ♀ Lyapunov-based Analysis
- **Q** Stability of SHSs Driven by Renewal Processes

Main references: Davis, "Markov Models and Optimization" Chapman & Hall,1993 Kushner, "Stochastic Stability and Control" Academic Press,1967 Antunes et al., ACC'09, CDC'09, ACC'10, CDC'10

$$\begin{array}{l} \overrightarrow{V}(x(t)) = \|x\|^2 \\ \hline \frac{dV(x(t))}{dt} = \frac{\partial V(x(t))}{\partial x} f(x(t)) \\ \hline \frac{dV(x(t))}{dt} = \frac{\partial V}{\partial x} f(x) \le 0 \quad \Rightarrow \quad V(x(t)) = \|x(t)\|^2 \le \|x(0)\|^2 \end{array}$$

 $||x||^2$ remains bounded along trajectories !

ODE – Lie Derivative

$$\dot{x} = f(x) \qquad x \in \mathbb{R}^n$$

Along solutions to ODE

$$\begin{aligned} x(t+dt) &= x(t) + \dot{x}(t)dt + O(dt^2) \\ & \overbrace{f(x(t))}^{\checkmark} \end{aligned}$$

Given scalar-valued function $V:\mathbb{R}^n\to\mathbb{R}$

$$V(x(t+dt)) = V\left(x(t) + f(x(t))dt + O(dt^{2})\right)$$
$$= V(x(t)) + \frac{\partial V(x(t+dt))}{\partial x}f(x(t))dt + O(dt^{2})$$
$$\underbrace{\frac{\partial V(x(t))}{\partial t}}_{dt} = \lim_{dt \to 0} \frac{V(x(t+dt)) - V(x(t))}{dt} = \frac{\partial V(x(t+dt))}{\partial x}f(x(t))$$

Stochastic Impulsive System

Along a sample path to the SIS

$$x(t+dt) = \begin{cases} x(t) + f(x(t))dt + O(dt^2) & \text{no jumps in } (t, dt] \\ \phi(x(t)) + O(dt) & \text{one jump in } (t, dt] \\ ??? & \text{more than one jump } .. \end{cases}$$

Given scalar-valued function $V:\mathbb{R}^n\to\mathbb{R}$

$$V(x(t+dt)) = \begin{cases} V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t)) dt + O(dt^2) & \text{no jumps in } (t, dt] \\ V(\phi(x(t))) + O(dt) & \text{one jump in } (t, dt] \\ ??? & \text{more than one jump } \dots \end{cases}$$

Stochastic Impulsive System

UC SANTA BARBARA engineering

$$\begin{split} \overbrace{x \in \mathbb{R}^{n}}^{\lambda(x)dt} & \xrightarrow{t \to \phi(x)} \\ \downarrow t & t & t + dt \\ V(x(t+dt)) = \begin{cases} V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t)) dt + O(dt^{2}) & \text{no jumps in } (t, dt] \\ V(\phi(x(t))) + O(dt) & \text{one jump in } (t, dt] \\ P(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t)) dt + O(dt^{2}) & \text{w.p. } 1 - \lambda(x(t)) dt \\ V(\phi(x(t))) + O(dt) & \text{w.p. } \lambda(x(t)) dt \\ P(\phi(x(t))) + O(dt) & \text{w.p. } O(dt^{2}) \\ P(x(t+dt)) + X(t) = \left(V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t)) dt + O(dt^{2})\right) \left(1 - \lambda(x(t)) dt\right) \\ \end{cases}$$

 $+V\Big(\phi(x(t))\Big)\lambda(x(t))dt+O(dt^2)$

Stochastic Impulsive System

$$\begin{split} \overbrace{x \in \mathbb{R}^{n}}^{\lambda(x)dt} & \xrightarrow{t \to \phi(x)} \\ \downarrow &$$

UC SANTA BARBARA

Lecture #2 Outline

- **Q** Infinitesimal Generator and Dynkin's Formula
- ♀ Lyapunov-based Analysis
- **Q** Stability of SHSs Driven by Renewal Processes

Lyapunov Analysis – ODEs

$$\dot{x} = f(x) \qquad x \in \mathbb{R}^n$$

Given scalar-valued function $V : \mathbb{R}^n \to \mathbb{R}$

$$\frac{dV(x(t))}{dt} = \frac{\partial V(x(t))}{\partial x} f(x(t))$$

Suppose
$$\begin{cases} V(x) \ge 0 \\ \frac{\partial V(x)}{\partial x} f(x) \le 0 \end{cases} \quad \forall x$$

Then $\frac{dV(x(t))}{dt} = \frac{\partial V}{\partial x}f(x) \le 0 \Rightarrow V(x(t)) \le V(x_0) \quad \forall t \ge 0$

zero at zero & monotone increasing

UC SANTA BARBARA

enaineerina

"Squeezing" V(x) between two class-K functions $\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$

||x(t)|| can be kept arbitrarily small by making $||x_0||$ small

$$|x(t)|| \le \alpha_1^{-1} \big(\alpha_2(||x_0||)\big) \quad \forall t \ge 0$$
Lyapunov Analysis – SISs

Lyapunov Analysis – SISs

$$\begin{split} \overbrace{x \in \mathbb{R}^{n}}^{\bigwedge(x)dt} & \frac{d}{dt} \mathbb{E}\left[V(x(t))\right] = \mathbb{E}\left[(LV)(x(t))\right] \\ & \frac{d}{dt} \mathbb{E}\left[V(x(t))\right] = \mathbb{E}\left[(LV)(x(t))\right] \\ & \text{Suppose} \quad \left\{ \begin{array}{c} V(x) \ge 0 \\ LV(x) \le 0 \end{array} \right. \forall x \\ & \text{Pick } T, K > 0 \text{ and define} \\ & \tau^{*} := \begin{cases} T & V(x(t)) < K, \forall t \in [0, T] \\ 1 \text{ st time } V(x(t)) \ge K & \text{otherwise} \\ & z^{*} := \begin{cases} 0 & V(x(t)) < K, \forall t \in [0, T] \\ 1 & \text{otherwise} \end{cases} \\ & \text{From Dynkin's formula} \\ & \mathbb{E}\left[V(x(\tau^{*}))\right] \le \mathbb{E}\left[V(x(0))\right] = V(x_{0}) \\ & z^{*}V(x(\tau^{*})) + \underbrace{(1-z^{*})V(x(\tau^{*}))}_{\ge 0} \ge z^{*}K \end{cases} \xrightarrow{P\left(V(x(t)) \text{ ever becomes } \ge K\right)} \end{split}$$

UC SANTA BARBARA engineering

Lyapunov Stability in ProbabilityConstants barbara
engineering
$$(x) = f(x)$$

 $x \in \mathbb{R}^n$
 $x \in \mathbb{R}^n$ $(x) dt$
 $dt $E\left[V(x(t))\right] = E\left[(LV)(x(t))\right]$ SupposeDoob's
(Martingale)
inequality $\begin{cases} V(x) \ge 0 \\ LV(x) \le 0 \end{cases}$
 $\forall x \Rightarrow P\left(V(x(t)) \text{ ever becomes } \ge K\right) \le \frac{V(x_0)}{K}$
zero at zero & monotone increasing
 $\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$ "Squeezing" $V(x)$ between two class-K functions $\alpha_1(||x||) \le V(x) \le \alpha_2(||x||)$ $P\left(||x(t)|| \text{ ever becomes } \ge M\right) \le \frac{\alpha_2(||x_0||)}{\alpha_1(M)}$
Lyapunov stability
in probability of $||x(t)||$ exceeding any given bound M ,
can be made arbitrarily small by making $||x_0||$ small$

Ensemble Notions of Stability

$$\overbrace{\begin{array}{c} \dot{x} = f(x) \\ x \in \mathbb{R}^n \end{array}}^{\lambda(x)dt} \lambda(x)dt$$

$$\frac{d}{dt} \mathbf{E} \left[V(x(t)) \right] = E \left[(LV)(x(t)) \right]$$

UC SANTA BARBARA

engineerii

Suppose $\begin{cases} V(x) \ge 0\\ LV(x) \le -W(x) \end{cases}$

Integrating Dynkin's formula

$$E\left[V(x(T))\right] - V(x_0) \le -\int_0^T E\left[W(x(t))\right] dt \quad \forall T > 0$$

$$\ge 0 \quad \Rightarrow \quad \int_0^T E\left[W(x(t))\right] dt \le V(x_0)$$

$$\int_0^\infty E\left[W(x(t))\right] dt < \infty \qquad \begin{array}{l} \text{stochastic stability} \\ (\text{mean square if} \\ W(x) = \|Ix\|^2) \end{array}$$

Ensemble Notions of Stability
$$\begin{split}
& (x) & (x) \\
& (x)$$

(mean square if $W(x) = ||x||^2$)

Lyapunov-based stability analysis

UC SANTA BARBARA engineering

error dynamics in remote estimation $\lambda(e)dt$ $\dot{e} = Ae + B\dot{w}$ $e := x - \hat{x}$ $e \mapsto 0$ Dynkin's formula $\frac{d}{dt} \mathbb{E} \left[V(e(t)) \right] = E \left[(LV)(e(t)) \right]$ $(LV)(e) := \frac{\partial V}{\partial e} Ae + \lambda(e) \left(V(0) - V(e) \right) + \frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$

2nd moment of the error:

$$V(e) = e'Pe \Rightarrow (LV)(e) = e'\left[\left(A - \frac{\lambda(e)}{2}I\right)'P + P\left(A - \frac{\lambda(e)}{2}I\right)\right]e + \operatorname{trace} B'PB$$

For constant rate: $\lambda(e) = \gamma$

$$A - \frac{\gamma}{2}I$$
 Hurwitz $\Rightarrow \exists \mu > 0, P \ge I : \left(A - \frac{\gamma}{2}I\right)' P + P\left(A - \frac{\gamma}{2}I\right) \le -\mu P$

Lyapunov-based stability analysis

error dynamics in remote estimation $\lambda(e)dt$ $\dot{e} = Ae + B\dot{w}$ $e := x - \hat{x}$ $e \mapsto 0$ $\frac{d}{dt} \mathbb{E} \left[V(e(t)) \right] = E \left[(LV)(e(t)) \right]$ $(LV)(e) := \frac{\partial V}{\partial e} Ae + \lambda(e) \left(V(0) - V(e) \right) + \frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ $(LV)(e) := \frac{\partial V}{\partial e} Ae + \lambda(e) \left(V(0) - V(e) \right) + \frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ $2^{nd} \text{ moment of the error:}$ $V(e) = e'Pe \Rightarrow (LV)(e) = e' \left[\left(A - \frac{\lambda(e)}{2} I \right)' P + P \left(A - \frac{\lambda(e)}{2} I \right) \right] e + \operatorname{trace} B'PB$ For constant rate: $\lambda(e) = \gamma$ $A - \frac{\gamma}{2}I \text{ Hurwitz} \Rightarrow \exists \mu > 0, P \ge I : \left(A - \frac{\gamma}{2}I \right)' P + P \left(A - \frac{\gamma}{2}I \right) \le -\mu P$ $\begin{cases} V(e) \ge \|e\|^2 \ge 0 \\ LV(e) \le -\mu V + \operatorname{trace} B'PB \end{cases} \Rightarrow \mathbb{E} \left[\|e(t)\|^2 \right] \le e^{-\mu t} e'_0 P e_0 + \frac{\operatorname{trace} B'PB}{\mu}$

UC SANTA BARBARA

UC SANTA BARBARA Lyapunov-based stability analysis enaineerinc error dynamics Dynkin's formula in remote estimation $\lambda(e)dt$ $\frac{d}{dt} \mathbf{E} \left[V(e(t)) \right] = E \left[(LV)(e(t)) \right]$ $\dot{e} = Ae + B\dot{w}$ $(LV)(e) := \frac{\partial V}{\partial e} Ae + \lambda(e) \left(V(0) - V(e) \right) + \frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ $e := x - \hat{x}$ 2nd moment of the error: $V(e) = e'Pe \Rightarrow (LV)(e) = e'\left[\left(A - \frac{\lambda(e)}{2}I\right)'P + P\left(A - \frac{\lambda(e)}{2}I\right)\right]e + \operatorname{trace} B'PB$ For radially unbounded rate: $\lambda(e)$ $V(e) = \|e\|^2 \quad \Rightarrow \quad (LV)(e) + \mu V = 2e'Ae + \mu\|e\|^2 - \lambda(e)\|e\|^2 + \operatorname{trace} B'PB$ as $||e|| \to \infty$ $\forall \mu$, must be upper bounded by some $c < \infty$

Lyapunov-based stability analysis

engineering

UC SANTA BARBARA Lyapunov-based stability analysis ineering error dynamics Dynkin's formula in remote estimation $\lambda(e)dt$ $\frac{d}{dt} \mathbf{E} \left[V(e(t)) \right] = E \left[(LV)(e(t)) \right]$ $\dot{e} = Ae + B\dot{w}$ $(LV)(e) := \frac{\partial V}{\partial e} Ae + \lambda(e) \left(V(0) - V(e) \right) + \frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ For constant rate: $\lambda(e) = \gamma$ (exp. distributed inter-jump times) if and only if $\gamma > \Re[\lambda(A)]$ 1. E[e] $\rightarrow 0$ getting more moments bounded requires higher comm. rates 2. E[$||e||^m$] bounded if and only if $\gamma > m \Re[\lambda(A)]$ For radially unbounded rate: $\lambda(e)$ (reactive transmissions) Moreover, one can achieve the same E[$||e||^2$] with 5. E[e] $\rightarrow 0$ (always) less communication than with a constant rate or 6. E[$||e||^m$] bounded $\forall m$ periodic transmissions...

Lecture #2 Outline

- **Q** Infinitesimal Generator and Dynkin's Formula
- Lyapunov-based Analysis
- **Q** Stability of SHSs Driven by Renewal Processes

Time-triggered Linear SIS t_k $r \mapsto Jx$ t_k $x \mapsto Jx$ x = Ax $x \mapsto Jx$ $t_{k+1} - t_k \sim i.i.d.$, with cumulative distribution function $F(\cdot)$ Defining $x_k := x(t_k)$ state at jump times $x_{k+1} = Je^{A(t_{k+1}-t_k)}x_k$ resetcontinuous
evolution

Time-triggered Linear SIS

Time-triggered Linear SIS

$$t_{k+1} - t_k \sim \text{i.i.d.}$$
, with cumulative distribution function $F(\cdot)$

Theorem:

UC SANTA BARBARA Time-triggered Linear SIS enaineerina All stability notions require $x \mapsto Jx$ $\lim_{k \to \infty} \|x_k\| = 0 \quad \text{exponentially fast}$ $\tau \mapsto 0$ x the conditions essentially only differ on the requirements on the tail of distribution $1 - F(s) = P(t_{k+1} - t_k > s)$ t_{I} **Theorem:** $\ \, { \ \, \bigcirc } \ \, P > 0, { \ \, \mathrm{E} }_{F(s)} \left[e^{A's} P e^{As} \right] < P$ $$\begin{split} P > 0, & \mathbf{E}_{F(s)} \left[e^{A \ s} P e^{As} \right] < P & \text{mean-square stochastic stability} \\ \& \ & \mathbf{E}_{F(s)} [e^{A's} e^{As}] = \int_0^\infty e^{A's} e^{As} F(ds) < \infty & \Leftrightarrow \quad \int_0^\infty \mathbf{E}[\|x(t)\|^2] dt < \infty \end{split}$$ ${\color{black} {\textstyle \bigcirc}} \hspace{0.1 cm} P > 0, \mathbb{E}_{F(s)} \left[e^{A's} P e^{As} \right] < P$ $$\begin{split} & \mathbf{E}_{F(s)} \left[e^{A \ s} P e^{As} \right] < P & \text{mean-square asymptotic stability} \\ & \& \lim_{s \to \infty} e^{A's} e^{As} \big(1 - F(s) \big) = 0 & \Leftrightarrow & \lim_{t \to \infty} \mathbf{E}[\|x(t)\|^2] = 0 \end{split}$$ $P > 0, \mathbf{E}_{F(s)} \left[e^{A's} P e^{As} \right] < P$ mean-square exponential stability $\& \lim_{s \to \infty} e^{A's} e^{As} (1 - F(s)) \stackrel{\text{exp. fast}}{=} 0 \quad \Leftrightarrow \quad \lim_{t \to \infty} \mathbf{E}[\|x(t)\|^2] \stackrel{\text{exp. fast}}{=} 0$

Time-triggered Linear SIS

 $t_{k+1} - t_k \sim \text{i.i.d.}$, with cumulative distribution function $F(\cdot)$

Theorem:

system is mean exponentially stable, i.e., $E[||x(t)||^2] \le ce^{-\alpha t} ||x(0)||^2, \quad \forall t \ge 0$

↕

Lyapunov-like function quadratic on x for fixed au

UC SANTA BARBARA

enaineerina

 $\exists P(\tau)$ such that defining $V(x,\tau) := x'P(\tau)x$

$$c_1 I \le P(\tau) \le c_2 I \qquad \Rightarrow \quad V \text{ is positive definite} (LV)(x,\tau) \le -\epsilon V(x,\tau) \qquad \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t} \operatorname{E}[V(x,\tau)] \le -\epsilon \operatorname{E}[V(x,\tau)]$$

(essentially a converse Lyapunov stability result)

network view:

control view:

This lecture: Co-design of network protocols and control algorithms

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Digital Control Systems

Digital control systems usually exhibit uniform sampling intervals and delays

UC SANTA BARBARA

engineering

Non-uniform Sampling/Delays

♀ Uniform sampling cannot be guaranteed (packet drops, clock synchronization, ...)

UC SANTA BARBARA

ineerin

- Different samples may experience different delays
- ♀ Difficult to decouple continuous plant from discrete events (sampling, drops, ...)

Systems With Delays

Feedback loop with fixed delay

$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau)$$
(fixed) delay in
measuring $x(t)$
Feedback loop with variable delay
$$\frac{dx(t)}{dt} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau(t))$$

time-varying delay

UC SANTA BARBARA **Classical Analysis** enaineerina Feedback loop with fixed delay $\frac{\mathrm{d}x(t)}{\mathrm{d}t} = Ax(t) + Bu(t) \quad u(t) = Kx(t-\tau) \qquad sX(s) = (A + BKe^{-\tau s})X(s)$ time domain frequency domain time domain (Laplace transform) poles of the system $\equiv \left\{ s \in \mathbb{C} : \det \left(sI - (A + BKe^{-\tau s}) \right) = 0 \right\}$ stability \Leftrightarrow poles with negative real part (algebraic condition!) Feedback loop with variable delay frequency domain analysis $\frac{\mathrm{d}x(t)}{\mathrm{d}t} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau(t))$ does not lead to simple algebraic conditions! time-varving delay

UC SANTA BARBARA engineering

Classical Analysis

UC SANTA BARBARA

UC SANTA BARBARA

enaineerina

Lyapunov-based Analysis

Feedback loop with variable delay

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau(t))$$

time-varying delay

Lyapunov-based analysis

$$V(x) := ||x||^2 \quad \frac{\mathrm{d}V(x)}{\mathrm{d}t} = \frac{\partial V(x)}{\partial x} \frac{\mathrm{d}x(t)}{\mathrm{d}t} \dots < 0 \quad \Rightarrow \text{ stability!}$$

- this "simplest" Lyapunov function is unlikely to "work," but ...
- one can use numerical optimization techniques to find appropriate functions (actually functionals)
- stability conditions appear as feasibility problems that can be solved numerically very efficiently
- to apply these methods we need to find appropriate model for NCSs with delays...

Delay Impulsive Systems

UC SANTA BARBARA

UC SANTA BARBARA

enaineerina

Stability of Delay Impulsive Systems

Consider delay impulsive system

$$\dot{x} = f_k(x, t), \qquad t \neq t_k, \forall k \in \mathbb{N}, \\ x(t_{k+1}) = g_k(x^-(t_{k+1}), x(t_{k+1} - \tau_k)) \qquad t = t_k, \forall k \in \mathbb{N}.$$

System is GUES if there exists a Lyapunov functional

$$V: C([-r,0],\mathbb{R}^n) \times \mathbb{R}^+ \to \mathbb{R}^+$$

such that

state x truncated to the last r time units

(a)
$$d_1 |\phi(0)|^b \leq V(\phi, t) \leq d_2 |\phi(0)|^b + \bar{d}_2 \int_{t-r}^t |\phi(s)|^b ds \quad \forall \phi \in C([-r, 0]), t \in \mathbb{R}^+$$

(b) $\frac{dV(x_t, t)}{dt} \leq -d_3 |x(t)|^b$
(c) $V(x_{t_k}, t_k) \leq \lim_{t\uparrow t_k} V(x_t, t)$
for $d_1, d_2, \bar{d}_2, d_3, b > 0$,
state x truncated to the last r time units

Extended version of Lyapunov-Krasovskii Theorem for delayed systems with jumps.
 Lead to LMIs for linear systems

- **Q** Transmission time is $C_i = 1 ms$ (8 bytes, 64 kbit/s)
- ♀ Closed-loop system remains stable for any constant sampling smaller than 48 ms when delay=0

 \Rightarrow we choose sampling interval =12 ms

Network protocols & Control laws

network view:

control view:

This lecture: Co-design of network protocols and control algorithms

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Transport layer protocols

Most common (general purpose) protocols:

UDP

• no attempt at error correction

• no attempt to control data rate

ТСР

- error correction
 - ° all packets sent should be acknowledged by receiver
 - ° lack of acknowledgement of packet n leads to retransmission of same packet after packet n + 3 (triple duplicate ack mechanism)

• congestion control

° packet drops are taken as a sign of con

delayed retransmissions are essentially useless; too much overhead in ack every packet

high drop rates can lead

to poor performance and

eventually instability

rease

UC SANTA BARBARA

Optimal "simplified" protocols

UC SANTA BARBARA engineering

application <	control vi application transport network data link physical	ew: er process sk delay
---------------	--	----------------------------------

2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Problem formulation

UC SANTA BARBARA

Constraint: memory and computation required should not increase with time.

Network protocols & Control laws

network view:

control view:

This lecture: Co-design of network protocols and control algorithms

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

