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Application Areas

Buildings consume 72% of 
electricity, 40% of all energy, 
and produce close to 50% of 

U.S. carbon emissions

Efficiency and safety in cars depend on a network of 
hundreds of ECUs (power train, ABS, stability control, 

speed control, transmission, …)

Robotic agents free humans from unpleasant, 
dangerous, and/or repetitive tasks in which 

human performance would degrade over time 
due to fatigue

Process control or 
power plant facilities 
often have between 
several thousand of 

coupled control loops

Active suspension model
constant sampling = 2 ms

Simulated with TrueTime

Ben Gaid, Cela,Kocik 
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Digital control systems usually exhibit uniform sampling intervals and delays  
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Non-uniform Sampling/Delays

 Uniform sampling cannot be guaranteed (packet drops, clock synchronization, …) 
 Different samples may experience different delays
 Difficult to decouple continuous plant from discrete events (sampling, drops, …)
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Course Overview

Lecture #1:!Modeling Framework − Hybrid Dynamical Systems
! (Deterministic, Stochastic, Impulsive)

Lecture #2:!Analysis of Stochastic Hybrid Systems
! (Generator, Lyapunov-based Methods)

(extra material): NCS Protocol Design
! (Medium Access, Transport, Routing)

Lecture #1

Modeling Framework:

Hybrid Dynamical Systems



Lecture #1 Outline

Deterministic Impulsive Systems (DISs)

Deterministic Hybrid Systems (DHSs)

Stochastic Hybrid Systems (SHSs)

Simulation of SHSs

SHSs Driven by Renewal Processes

Main references:
Davis, “Markov Models and Optimization” Chapman & Hall,1993
Cassandras, Lygeros, “SHSs” CRC Press 2007
Hespanha, “A Model for SHSs with Application ...” Nonlinear Analysis 2005.

Deterministic Impulsive Systems

guard
conditions

reset-maps

continuous
dynamics

x(t) 2 Rn ´ continuous state

ẋ = f(x)



Example #1: Bouncing Ball

g

y

c 2 [0,1] ´ energy “reflected” at impact

Notation: given x : [0,1)!Rn ´ piecewise continuous signal

at points t where x is continuous x(t) = x−(t) = x+(t)

By convention we will generally assume right continuity, i.e.,

x
x– x+

Free fall ´

Collision ´

x(t) = x

+(t) 8t � 0

Example #1: Bouncing Ball

t

transition

guard or jump condition

state reset

for any c < 1,there are infinitely 
many transitions in finite time (Zeno 

phenomena)

Free fall ´

Collision ´

Impulsive System
(all discreteness in the 
form of instantaneous 
changes in the state)

x1 = 0 & x2 < 0 ?

x2 7! �cx

�
2

x1 := y



Deterministic Hybrid Systems

guard
conditions

reset-maps

continuous
dynamics

q(t) 2 Q={1,2,…}! ´ discrete state 
x(t) 2 Rn ! ´ continuous state

right-continuous
by convention

Example #2: TCP Congestion Control

server clientnetwork

transmits
data packets

receives
data packets

TCP (Reno) congestion control: packet sending rate given by

congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast! (slow-start)
• after first packet is dropped, w increases linearly! (congestion-avoidance)
• each time a drop occurs, w is divided by 2! !  (multiplicative decrease)

packets dropped
due to congestion

r

congestion control! ´ selection of the rate r at which the server transmits packets
feedback mechanism! ´ packets are dropped by the network to indicate congestion



Example #2: TCP Congestion Control

TCP (Reno) congestion control: packet sending rate given by

congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast! (slow-start)
• after first packet is dropped, w increases linearly! (congestion-avoidance)
• each time a drop occurs, w is divided by 2! !  (multiplicative decrease)

“drop event”

“drop event”

Drops by Queue Overflow

When r exceeds B the queue fills and data is lost (drops)

)  drop event

r bps

rate · B bps

s( t ) ´ queue size

queue 
(temporary

data storage)



Example #2: TCP Congestion Control

r bps

rate · B bps

s( t ) ´ queue size

queue 
(temporary

data storage)

So far…

guard
conditions

reset-maps

continuous
dynamics

q(t) 2 Q={1,2,…}! ´ discrete state 
x(t) 2 Rn ! ´ continuous state

right-continuous
by convention



Stochastic Hybrid Systems

reset-maps

continuous
dynamics

transition intensities
(probability of transition in 
small interval  (t, t+dt])

q(t) 2 Q={1,2,…}! ´ discrete state 
x(t) 2 Rn ! ´ continuous state

�`(x)dt ≣ probability of transition in an “elementary” interval (t, t+dt]

≣ instantaneous rate of transitions per unit of time�`(x)
⇓

�4(x)dt

Stochastic Hybrid Systems

reset-maps

continuous
dynamics

Special case: When all λ are constant, transitions are controlled by a 
continuous-time Markov process 

q = 1 q = 2

q = 3

specifies q
(independently of x)

transition intensities
(probability of transition in 
small interval  (t, t+dt])

closely related to the so called 
Markovian Jump Systems

[Costa, Fragoso, Boukas, Loparo, Lee, Dullerud]

�4(x)dt



Example #2.1: TCP Congestion Control

server clientnetwork

transmits
data packets

receives
data packets

TCP (Reno) congestion control: packet sending rate given by

congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast! (slow-start)
• after first packet is dropped, w increases linearly! (congestion-avoidance)
• each time a drop occurs, w is divided by 2! !  (multiplicative decrease)

packets dropped
with probability pdrop

(before queue overflow)

congestion control! ´ selection of the rate r at which the server transmits packets
feedback mechanism! ´ packets are dropped by the network to indicate congestion

r

Example #2.1: TCP Congestion Control

TCP (Reno) congestion control: packet sending rate given by

congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast! (slow-start)
• after first packet is dropped, w increases linearly! (congestion-avoidance)
• each time a drop occurs, w is divided by 2! !  (multiplicative decrease)

“drop event”

“drop event”
packets dropped

with probability pdrop
(before queue overflow)



Example #2.1: TCP Congestion Control

per-packet
drop prob.

pckts sent
per sec

£ pckts dropped
per sec=

TCP (Reno) congestion control: packet sending rate given by

congestion window (internal state of controller)

round-trip-time (from server to client and back)
• initially w is set to 1
• until first packet is dropped, w increases exponentially fast! (slow-start)
• after first packet is dropped, w increases linearly! (congestion-avoidance)
• each time a drop occurs, w is divided by 2! !  (multiplicative decrease)

Lecture #1 Outline

Deterministic Impulsive Systems (DISs)

Deterministic Hybrid Systems (DHSs)

Stochastic Hybrid Systems (SHSs)

Simulation of SHSs

SHSs Driven by Renewal Processes



Stochastic Impulsive Systems

reset-maps

continuous
dynamics

transition intensities
(probability of transition in 

interval  (t, t+dt])
ẋ = f(x)

�(x)dt x 7! �(x)

1. Initialize state:

2. Draw a unit-mean exponential random 
variable

3. Solve ODE

until time tk+1 for which

4. Apply the corresponding reset map

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

ẋ = f(x) x(tk) = xk t � tk

�(x)dt x 7! �(x)

E ⇠ exp(1)

Z tk+1

tk

�(x(t))dt � E

x(tk+1) = xk+1 := �(x�(tk+1))

x(t0) = x0 k = 0

here we take x0 as a
given parameter 



1. Initialize state:

2. Draw a unit-mean exponential random 
variable

3. Solve ODE

until time tk+1 for which

4. Apply the corresponding reset map

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

ẋ = f(x) x(tk) = xk t � tk

�(x)dt x 7! �(x)

E ⇠ exp(1)

Z tk+1

tk

�(x(t))dt � E

x(tk+1) = xk+1 := �(x�(tk+1))

x(t0) = x0 k = 0

here we take x0 as a
given parameter 

Why does this algorithm lead to

≣ instantaneous rate of 
transitions per unit of time ?

�(x)

Solve ODE

until time tk+1 for which

Numerical Simulation of SISs

ẋ = f(x) x(tk) = xk t � tk

Z tk+1

tk

��(x(t))dt � E� ⇠ exp(1)

tk

conditional
probability

exponential
distribution

t tk+1 t+dt

ẋ = f(x)

�(x)dt x 7! �(x)
Z tk+1

tk

�(x(t))dt � E

P

⇣
jump in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘

= P

⇣Z t

tk

� < E 
Z t+dt

tk

�
�� tk, x(tk),

Z t

tk

� < E
⌘

=

P

⇣ R t
tk
� < E 

R t+dt
tk

�
�� tk, x(tk)

⌘

P

⇣ R t
tk
� < E

�� tk, x(tk)
⌘

=

e
�

R t
tk

� � e
�

R t+dt
tk

�

e
�

R t
tk

�
= 1� e�

R t+dt
t � dt!0���! �(x(t))dt



Solve ODE

until time tk+1 for which

Numerical Simulation of SISs

ẋ = f(x) x(tk) = xk t � tk

Z tk+1

tk

��(x(t))dt � E� ⇠ exp(1)

tk t tk+1 t+dt

ẋ = f(x)

�(x)dt x 7! �(x)
Z tk+1

tk

�(x(t))dt � E

P

⇣
jump in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘

dt!0���⇥ �(x(t))dt

P

⇣
multiple jumps in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘
= · · · = O(dt2)

1. Initialize state:

2. Draw a unit-mean exponential random 
variable

3. Solve ODE

until time tk+1 for which

4. Apply the corresponding reset map

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

ẋ = f(x) x(tk) = xk t � tk

�(x)dt x 7! �(x)

E ⇠ exp(1)

Z tk+1

tk

�(x(t))dt � E

x(tk+1) = xk+1 := �(x�(tk+1))

x(t0) = x0 k = 0

here we take x0 as a
given parameter 

This algorithm is “exact” modulo:
 errors in extracting realizations 
of exponential random variables 
 numerical errors in solving ODE
 numerical errors in “zero-
crossing” detection

overall very accurate...



Stochastic Impulsive Systems

reset-maps

continuous
dynamics

transition intensities
(probability of transition in 

interval  (t, t+dt])
ẋ = f(x)

1. Initialize state:

2. Draw one independent exponential random 
variable (unit mean) per transition

3. Solve ODE

until time tk+1 for which

for some transition ℓ*.
4. Apply the corresponding reset map ℓ*

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

E1, E2, E3 ⇠ exp(1)

ẋ = f(x) x(tk) = xk t � tk

Z tk+1

tk

��(x(t))dt � E�

x(tk+1) = xk+1 := ��⇤(x
�(tk+1))

x(t0) = x0 k = 0



1. Initialize state:

2. Draw one independent exponential random 
variable (unit mean) per transition

3. Solve ODE

until time tk+1 for which

for some transition ℓ*.
4. Apply the corresponding reset map ℓ*

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

E1, E2, E3 ⇠ exp(1)

x(tk+1) = xk+1 := ��(x
�(tk+1))

8
>>>><

>>>>:

ẋ = f(x) x(tk) = xk

ṁ1 = �1(x) m1(tk) = 0

ṁ2 = �2(x) m2(tk) = 0
...

...

t � tk

m�(tk+1) � E�

x(t0) = x0 k = 0

1. Initialize state:

2. Draw one independent exponential random 
variable (unit mean) per transition

3. Solve ODE

until time tk+1 for which

for some transition ℓ*.
4. Apply the corresponding reset map ℓ*

set k = k + 1 and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

E1, E2, E3 ⇠ exp(1)

x(tk+1) = xk+1 := ��(x
�(tk+1))

8
>>>><

>>>>:

ẋ = f(x) x(tk) = xk

ṁ1 = �1(x) m1(tk) = 0

ṁ2 = �2(x) m2(tk) = 0
...

...

t � tk

m�(tk+1) � E�

Under appropriate (mild) 
assumptions this 

procedure results in a 
(strong) Markov Process

However… 
x(t)

x(t0) = x0 k = 0



1. Initialize state:

2. Draw one independent exponential random 
variable (unit mean) per transition

3. Solve ODE

until time tk+1 for which

for some transition ℓ.

4. Apply the corresponding reset map ℓ

and go to 2.

Numerical Simulation of SISs

ẋ = f(x)

x(t0) = x0 q(t0) = q0 k = 0

E1, E2, E3 ⇠ exp(1)

x(tk+1) = xk+1 := ��(x
�(tk+1))

8
>>>><

>>>>:

ẋ = f(x) x(tk) = xk

ṁ1 = �1(x) m1(tk) = 0

ṁ2 = �2(x) m2(tk) = 0
...

...

t � tk

m�(tk+1) � E�

Attention: 
These systems may have issues with existence of solution due to jumps!
E.g.

In either case, “bad things can happen” with nonzero probability.

ẋ = 0 ẋ = 0

x 7! 2x x 7! x

2

x dt

1 dt

jumping makes 
jumping more likely
⇒ bounded tk

(stochastic Zeno)

E[x] can become arbitrarily 
large in a finite interval
(probability of multiple 

jumps in short interval not 
sufficiently small)

back to Stochastic Hybrid Systems ...

reset-maps

continuous
dynamics

transition intensities
(probability of transition in 

interval  (t, t+dt])

q(t) 2 Q={1,2,…}! ´ discrete state 
x(t) 2 Rn ! ´ continuous state

For simulation purposes, we can view the SHS as a SIS with an enlarged state 

z :=


q

x

�
) ż =


q̇

ẋ

�
=


0

f(q, x)

�
=: F (z)



back to Stochastic Hybrid Systems ...


q̇

ẋ

�
=


0

f(q, x)

�

(
�1(x)dt if q = 1

0 otherwise

(q, x) 7!
�
2,�1(x)

�

(q, x) 7!
�
3,�1(x)

�

(
�2(x)dt if q = 2

0 otherwise

...

Same algorithms can 
be used to simulate the 

equivalent SIS

Generalizations

1.! Deterministic guards can also be emulated by taking limits of SHSs

-1 1

This provides a mechanism to regularize systems 
with chattering and/or Zeno phenomena…

barrier
function

g(x)

The solution for the deterministic guard is obtained as ✏ ! 0

+

✏ ! 0+



Example #1: Bouncing-ball

t

y
c 2 (0,1) ´ energy absorbed at impact

Zeno-time

The solution of this deterministic hybrid 
system is only defined up to the Zeno-time

g

y

g

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

1.2
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0.4

0.6

0.8

1

1.2

0 5 10 15
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

mean (blue) 95% confidence intervals (red and green)

Stochastic Bouncing-Ball

g

y

g

c 2 (0,1) ´ energy absorbed at impact

✏ = 10�2 ✏ = 10�3 ✏ = 10�4



Generalizations

2.! Stochastic resets can be obtained by considering multiple intensities/reset-maps

One can further generalize this to resets 
governed by a continuous distribution

x 7!
(
�1(x) w.p. p

�2(x) w.p. 1� p

(1� p)�(x)dt

p�(x)dt

Generalizations

3.! Stochastic differential equations (SDE) for the continuous state can be emulated 
by taking limits of SHSs

Gaussian white noise

The solution to the SDE is obtained as ✏ ! 0

+

x 7! x� g(x)
p
�

�

2
dt

�

2
dt

x 7! x+ g(x)
p
�



packet-switched
network

Example #3: Estimation through network

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process

encoder logic ´ determines when to send measurements to the network
decoder logic ´ determines how to incorporate received measurements  

state-estimator

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

packet-switched
network

Stochastic communication logic

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process

encoder logic ´ determines when to send measurements to the network 

state-estimator

decoder logic ´ determines how to incorporate received measurements

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

[similar ideas pursued by Astrom , Tilbury, Hristu, Kumar, Basar]



packet-switched
network

Error Dynamics

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process state-estimator

Error dynamics:

reset error to zero

prob. of sending data in [t,t+dt) depends 
on current error e

for simplicity:
• full-state available
• no measurement noise
• no quantization
• no transmission delays

Stochastic Impulsive System

Lecture #1 Outline

Deterministic Impulsive Systems (DISs)

Deterministic Hybrid Systems (DHSs)

Stochastic Hybrid Systems (SHSs)

Simulation of SHSs

Time-triggered SHSs



Time-triggered Stochastic Hybrid Systems

reset-maps

continuous
dynamics

transition times
tk+1 – tk i.i.d.

with given distribution

q(t) 2 Q={1,2,…}! ´ discrete state 
x(t) 2 Rn ! ´ continuous state

t3k

t3k+1

t3k+2

N(t) ´ # of transitions before time t 
renewal process

(iid inter-increment times)

(Also known as SHSs driven by renewal processes)

Example #4: Networked Control System

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

process: controller:

round-robin network access:

sampling
times

hold



Example #4: Networked Control System

process: controller:

round-robin network access:

hold

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

What if the network is not available at a sample time tk ?

1st wait until network becomes available

2nd send (old) data from original sampling of continuous-time output
or

2nd send (latest) data from current sampling of continuous-time output

⇒ intersampling times tk+1  –  tk typically become random variables

Example #4: Networked Control System

Suppose tk+1  –  tk » i.i.d., exponentially distributed

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times



Example #4: Networked Control System

Suppose tk+1  –  tk » i.i.d., exponentially distributed

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

very unrealistic!
at best, tk+1  –  tk » i.i.d., constant + exponential 

but then x(t) is not a Markov process…

Time-triggered SIS

tk

Can we pick an intensity λ(·) to obtain the desired distribution for the tk ?

ẋ = f(x)

x 7! �(x)

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)



Time-triggered SIS

tk

Can we pick an intensity λ(·) to obtain the desired distribution for the tk ?

Recall:

P

⇣
jump in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘

dt!0���! ��(x(t))dt

ẋ = f(x)

x 7! �(x)

hazard rate

tk t tk+1 t+dt

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

P
⇣
t <tk+1  t+ dt

��
tk, x(tk), tk+1 > t

⌘

=
F (t+ dt� tk)� F (t� tk)

1� F (t� tk)
dt!0���! F

0(t� tk)

1� F (t� tk)
dt

Time-triggered SIS

ẋ = f(x)

Can we pick an intensity λ(·) to obtain the desired distribution for the tk ?

x 7! �(x)

Recall:

P

⇣
jump in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘

dt!0���! ��(x(t))dt

F 0(t� tk)

1� F (t� tk)
dt

hazard rate

tk t tk+1 t+dt

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

P
⇣
t <tk+1  t+ dt

��
tk, x(tk), tk+1 > t

⌘

=
F (t+ dt� tk)� F (t� tk)

1� F (t� tk)
dt!0���! F

0(t� tk)

1� F (t� tk)
dt



Time-triggered SIS

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)
Can we pick an intensity λ(·) to obtain the desired distribution for the tk ?

Recall:

P

⇣
jump in (t, t+ dt]

�� tk, x(tk), no jump in [tk, t]
⌘

dt!0���! ��(x(t))dt

t1 t2 t3 t

time since last reset
�(t) = t� tk

hazard rate

F 0(�)

1� F (�)
dt

ẋ = f(x)

�̇ = 1

x 7! ⇥(x)

� 7! 0

the aggregate state (x,τ) is a Markov process

P
⇣
t <tk+1  t+ dt

��
tk, x(tk), tk+1 > t

⌘

=
F (t+ dt� tk)� F (t� tk)

1� F (t� tk)
dt!0���! F

0(t� tk)

1� F (t� tk)
dt

Example #4: Networked Control System

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

t1 t2 t3

τ(t)

t

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times



Example #4: Networked Control System

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

t1 t2 t3

τ(t)

t

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

This representation allows one to 
combine  in the same SHS 

time and event triggered transitions!

Lecture #2

Analysis of Stochastic Hybrid Systems



Lecture #2 Outline

Infinitesimal Generator and Dynkin’s Formula

Lyapunov-based Analysis

Stability of SHSs Driven by Renewal Processes

Main references:
Davis, “Markov Models and Optimization” Chapman & Hall,1993
Kushner, “Stochastic Stability and Control” Academic Press,1967
Antunes et al., ACC’09, CDC’09, ACC’10, CDC’10

ODE − Lie Derivative

derivative
along solution

to ODE
Lf V

Lie derivative of V 

Basis of “Lyapunov” formal arguments to establish boundedness and stability…

remains bounded along trajectories !

dV
�
x(t)

�

dt
=

�V
�
x(t)

�

�x
f
�
x(t)
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ODE − Lie Derivative
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Stochastic Impulsive System

t t+dttk
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Stochastic Impulsive System
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Stochastic Impulsive System
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Generator of a Stochastic Impulsive System

Given scalar-valued function V : Rn ! R
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Generator of a Stochastic Hybrid System

(extended)
generator of 

the SHS

where

Lie derivative

Reset term

Dynkin’s formula
(in differential form)

Diffusion term
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Example #3: Remote estimation

encoder decoder
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process state-estimator
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Lecture #2 Outline

Infinitesimal Generator and Dynkin’s Formula

Lyapunov-based Analysis

Stability of SHSs Driven by Renewal Processes

Lyapunov Analysis − ODEs
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Lyapunov Analysis − SISs
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Lyapunov Analysis − SISs

x 7! �(x)

�(x)dt
d

dt

E
h
V

�
x(t)

�i
= E

h
(LV )

�
x(t)

�i

x 2 Rn
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Lyapunov Stability in Probability
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Almost Sure Asymptotic Stability
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Ensemble Notions of Stability
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packet-switched
network

Example #3: Remote estimation

encoder decoder

white noise
disturbance

x

x(t1) x(t2)

process state-estimator

Error dynamics:

reset error to zero

prob. of sending data in [t,t+dt) depends 
on current error e
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Lyapunov-based stability analysis

For constant rate: λ(e) = γ

2nd moment of the error:

Dynkin’s formulaerror dynamics
in remote estimation
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For radially unbounded rate: λ(e)

2nd moment of the error:
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Lyapunov-based stability analysis

For radially unbounded rate: λ(e)

2nd moment of the error:
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in remote estimation
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Mean-square exp. 
stability, regardless of 

how unstable A is
(true for every moment)

Lyapunov-based stability analysis

For constant rate: λ(e) = γ (exp. distributed inter-jump times)

1. E[ e ] ! 0 ! if and only if γ > <[λ(A)]
2. E[ || e ||m ] bounded! if and only if γ > m <[λ(A)]

For radially unbounded rate: λ(e) (reactive transmissions)

5. E[ e ] ! 0 ! (always)
6. E[ || e ||m ] bounded! 8 m

getting more moments bounded 
requires higher comm. rates

Moreover, one can achieve the same E[ ||e||2 ] with 
less communication than with a constant rate or 

periodic transmissions… 

Dynkin’s formulaerror dynamics
in remote estimation

ė = Ae+Bẇ
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Lecture #2 Outline

Infinitesimal Generator and Dynkin’s Formula

Lyapunov-based Analysis

Stability of SHSs Driven by Renewal Processes

Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

Defining xk := x(tk) xk+1 = Je

A(tk+1�tk)
xk

state at jump times

reset continuous
evolution

F 0(�)

1� F (�)
dt

ẋ = Ax

�̇ = 1

x 7! Jx

� 7! 0



Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

Defining xk := x(tk) xk+1 = Je

A(tk+1�tk)
xk

state at jump times

reset continuous
evolution

expectation with respect tk+1  –  tk

(i.i.d., with cumulative distribution function F)

For a given symmetric matrix P

F 0(�)

1� F (�)
dt

ẋ = Ax

�̇ = 1

x 7! Jx

� 7! 0
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PJe
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Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

Defining xk := x(tk) xk+1 = Je

A(tk+1�tk)
xk

state at jump times

reset continuous
evolution
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Suppose

For a given symmetric matrix P
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Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

Defining xk := x(tk) xk+1 = Je

A(tk+1�tk)
xk

state at jump times

reset continuous
evolution
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Suppose

If there exists 

then

What about x(t) between jumps?

lim

k!1
kxkk = 0 (exponentially fast)

EF (s)

h
eA

0sPeAs
i
 �P, � < 1 ) E[x0

k+1Pxk+1]  � E[x0
kPxk]

For a given symmetric matrix P

P > 0, EF (s)

h
eA

0sPeAs
i
< P

x 7! Jx

� 7! 0

Time-triggered Linear SIS

Theorem:

system is mean-square stochastically stable, i.e.,

m

and or

expected value
w.r.t. inter-jump times

LMI on Pn£ n

spectral radius condition
on n2£ n2 matrix

Kronecker product

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

F 0(�)

1� F (�)
dt

ẋ = Ax

�̇ = 1

x 7! Jx

� 7! 0



Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)
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mean-square asymptotic stability
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Time-triggered Linear SIS

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)
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mean-square asymptotic stability
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Theorem:

mean-square stochastic stability
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dt
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All stability notions require

the conditions essentially only differ on the requirements 
on the tail of distribution
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kxkk = 0 exponentially fast
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Example #4: Networked Control System

Suppose tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

t1 t2 t3

τ(t)

t

processcontroller

shared
network sensor 2

sensor 1hold 1

hold 2

sampling
times

Previous results (extended to SHSs) provide nec. & suff. stability conditions when process and controller are linear

Time-triggered Linear SIS

system is mean exponentially stable, i.e.,

Lyapunov-like function 
quadratic on x for fixed τ

(essentially a converse Lyapunov stability result)

Theorem:

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

m

F 0(�)

1� F (�)
dt

ẋ = Ax

�̇ = 1

x 7! Jx

� 7! 0



Time-triggered Linear SIS

system is mean exponentially stable, i.e.,

Lyapunov-like function 
quadratic on x for fixed τ

(essentially a converse Lyapunov stability result)

Theorem:

tk

ẋ = Ax

x 7! Jx

tk+1  –  tk » i.i.d., with cumulative distribution function F(·)

m

F 0(�)

1� F (�)
dt

ẋ = Ax

�̇ = 1

x 7! Jx

� 7! 0
Motivates the use of Lyapunov functions of the form

for nonlinear systems.

V (x, ⇥) := �(⇥)W (x)

NCS Protocol Design

Supplemental material



Network protocols & Control laws
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processcontroller

delay

This lecture: Co-design of network protocols and control algorithms
1. Characterize key parameters that determine the stability/performance of 

a networked controls system
2. Construct protocols that directly take these parameters into 

considerations

Illustrative examples: 
• data link layer:� medium access control
• transport layer:� error correction (& flow control)
• network layer:� routing

serial communication, wired bus standard
designed for automation systems: passenger cars, trucks, boats, spacecrafts, printers
short messages for time critical applications
collision-free, priority-based medium access:

highest priority message gains access to network
lower priority messages back off and wait

Control Area Network

priority field



Active suspension model
constant sampling = 2 ms

Simulated with TrueTime

Ben Gaid, Cela,Kocik 

priorities 1

priorities 2

1  2  3  4  5  6  7 

1  2  3  4  5  6  7 

7  1  2  3  4  5  6 

node
network 
access

priorities

Message scheduling - does priority matter?

Digital control systems usually exhibit uniform sampling intervals and delays  

time

Plant SH

Controller

y(t)

yk

Hold (D/A) Sampler (A/D)

………

time

uk

………

u(t)s1 s2 s4s3

………h h h

Digital Control Systems

s1 s2 s4s3

s1 s2 s4s3
s1 s2 s4s3

h h h
h h h

h h h

sk+1 � sk = h



Non-uniform Sampling/Delays

 Uniform sampling cannot be guaranteed (packet drops, clock synchronization, …) 
 Different samples may experience different delays
 Difficult to decouple continuous plant from discrete events (sampling, drops, …)

time

………………

Plant SH

Controller

s1 s2 s3

………τ1 τ2

Network

Network packet dropsvariable
delays

s1 s2 s4s3

s1 s4s3s1 s4s3

u(t) y(t)

uk yk

Cloosterman and  van de Wouw (Eindhoven University)  

H

inertia of motor

inertia of roller pair

radius of roller 

n:  trans. ratio between motor and roller
xs: sheet position
u:  motor torque   

just variable sampling can lead to instability (even without drops)

Variable Delay Can Lead to Instability

variable delay

delay ⌧k



Systems With Delays

Feedback loop with fixed delay

(fixed) delay in
measuring x(t)

Feedback loop with variable delay

time-varying delay

Classical Analysis

time domain
(Laplace transform)

frequency domaintime domain

poles of the system ´

stability , poles with negative real part
(algebraic condition!)

time-varying delay

frequency domain analysis
does not lead to simple 

algebraic conditions!

Feedback loop with fixed delay

Feedback loop with variable delay



poles of the system ´

Classical Analysis

time domain
(Laplace transform)

frequency domaintime domain

stability , poles with negative real part
(algebraic condition!)

time-varying delay

frequency domain analysis
does not lead to simple 

algebraic conditions!

Feedback loop with fixed delay

Feedback loop with variable delay

Lyapunov-based tools allow us to design controllers for 
NCSs that maintain performance under 
• variable delays 
• variable sampling rate
• network drops, etc.

Lyapunov-based Analysis

Feedback loop with variable delay

time-varying delay

Lyapunov-based analysis

) stability!

• this “simplest” Lyapunov function is unlikely to “work,” but ...
• one can use numerical optimization techniques to find appropriate functions 

(actually functionals)
• stability conditions appear as feasibility problems that can be solved numerically 

very efficiently

• to apply these methods we need to find appropriate model for NCSs with delays…



k-th sampling time

Delay Impulsive Systems

k-th update time

H

variable delay

delay ⌧k

sk

deterministic delayed 
impulsive system

(time driven)

Single-channel NCS

  Extended version of Lyapunov-Krasovskii Theorem for delayed systems with jumps.
  Lead to LMIs for linear systems

Consider delay impulsive system

for  

(a)

(b)

(c)

System is GUES if there exists a Lyapunov functional

such that 

Stability of Delay Impulsive Systems

state x truncated to the last r time units

state x truncated to the last r time units



    such that

 There exists a set of pairs 

Based on previous theorem and an 
appropriate choice of functional …

 We find the stability region by solving Linear Matrix Inequalities (LMIs)

stable

Stability of Single-Channel NCSs

⇒ exponential stability
of the closed loop

H

delay ⌧k

sk

(�
max

, ⇥
max

)

Network

plant1

controller1

s1

s2
plant2

controller2

s3a2
…. 

stable
connection 1

connection 4

connection 3

connection 2
stable

stable

stable

Stability of Multi-Channel NCSs

stable

kth sampling time of channel i ´
kth update time of channel i ´

blocking 
delay

transmission + 
propagation delay

delay =

such that

)

 There exists a set of pairs (�imax

, ⇥imax

)

exponential stability
of all closed loops

a1



Network

plant1

controller1

s1

s2
plant2

controller2

s3a2
…. 

stable
connection 1

connection 4

connection 3

connection 2
stable

stable

stable

Stability of Multi-Channel NCSs

stable

kth sampling time of channel i ´
kth update time of channel i ´

blocking 
delay

transmission + 
propagation delay

delay =

such that

)

 There exists a set of pairs (�imax

, ⇥imax

)

These inequalities define deadlines for transmission delivery
(to be used, e.g., by Earliest Deadline First – EDF – scheduling) 
Blocking delay depends on priority assignment

exponential stability
of all closed loops

a1

Then the following holds for EDF scheduling

 Suppose:                          
  

  

  

Stable EDF scheduling

stable

can be implemented, 
e.g., using CAN priorities

do not sample too fast

fastest sample does not exceed capacity

and every pair (�imax

, ⇥imax

) belongs to the shaded region

) exponential stability
of all closed loops



inertia of motor

inertia of roller pair

radius of roller 

n:  trans. ratio between motor and roller
xs: sheet position
u:  motor torque   

Position and velocity measurements are sent to an ECU through a CAN network 
ECU computes control commands and applies to motors directly, which takes 0.1ms
Transmission time is Ci= 1 ms (8 bytes, 64 kbit/s)
Closed-loop system remains stable for any constant sampling smaller than 48 ms 
when delay=0 

 ! ⇒ we choose sampling interval =12 ms 

Controller gain

Example: motion control system for sheet control

H

delay ⌧k

sk

How many motors can be controlled?

Ad-hoc approach:! a conservative designer n=6 so bus load 50%
! an aggressive designer  n=11 so bus load just below 100% (91.7%)

Our approach:

By solving the LMIs we find admissible set
of sampling-delays. For sampling=12 ms, 
max variable delay=10ms

By testing scheduling condition with
Ti=12ms, Di=10-0.1=9.9ms, Ci=1ms 
we conclude n=9  (bus load 75%)

By following the proposed method we avoid 
conservative choices and ‘unsafe’ choices

max intersampling time
(ρmax)

ma
x d

ela
y (
τ m

ax
)

Example (continued)
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This lecture: Co-design of network protocols and control algorithms
1. Characterize key parameters that determine the stability/performance of 

a networked controls system
2. Construct protocols that directly take these parameters into 

considerations

Illustrative examples: 
• data link layer:� medium access control
• transport layer:� error correction (& flow control)
• network layer:� routing

Transport layer protocols

Most common (general purpose) protocols:

UDP
• no attempt at error correction
• no attempt to control data rate

TCP
• error correction

º all packets sent should be acknowledged by receiver
º lack of acknowledgement of packet n leads to retransmission of same packet 

after packet n + 3 (triple duplicate ack mechanism)
• congestion control

º packet drops are taken as a sign of congestion and lead to send rate decrease

high drop rates can lead 
to poor performance and 

eventually instability

delayed retransmissions 
are essentially useless; 

too much overhead in ack 
every packet



Illustrative 1-D problem

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

(it is also straightforward to 
compute a tight asymptotic 

bound on E[x(k)2])

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <1)  if and only if

Intuition: ignoring the disturbance d

Illustrative 1-D problem

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

(it is also straightforward to 
compute a tight asymptotic 

bound on E[x(k)2])

But what if |a|>1 and the probability of drop is larger than this bound?

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <1)  if and only if



Redundant transmissions

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <1)  if and only if

redundant transmissions ´ at each time step one sends N copies of x(k) through 
independent channels (time, frequency, or spatial 
diversity), each with drop probability p

any drop probability can be 
accommodated by choosing N 

sufficiently largebut transmission rate is N times larger

A simple “error-correction” protocol

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

The closed-loop is mean-square stable (i.e., E[ x(k)2 ] <1)  if and only if

1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter generally sends one packet at each sampling time, however…
3.upon reception of nack, transmitter sends two copies of the following packet 

similar bound as if
always sending two packets

but average transmission rate is only 1+O(p) times larger 
[ACC’09]

this result assumes no 
drops in nacks



Even better…

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

For every p, a, and N, one can find a function v : N ! N such that
• closed-loop is mean-square stable (i.e., E[ x(k)2 ] < 1) 
• average transmission rate is only 1+O(pN) times larger
• requires at least N independent channels

stabilizes any system

arbitrarily small increase in 
the transmission rate

Pick a function v : N ! N, with v(0) = 1
1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter keeps track of number (k) of consecutive drops prior to time k

• transmitter sends v((k)) copies of each packet

all but one channel are rarely utilized

this result assumes no 
drops in nacks

Even better…

disc.-time processdead-beat controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

For every p, a, and N, one can find a function v : N ! N such that
• closed-loop is mean-square stable (i.e., E[ x(k)2 ] < 1) 
• average transmission rate is only 1+O(pN) times larger
• requires at least N independent channels

stabilizes any system

arbitrarily small increase in 
the transmission rate

Pick a function v : N ! N, with v(0) = 1
1.when a packet is lost, receiver sends a “negative acknowledgement” (nack)
2.transmitter keeps track of number (k) of consecutive drops prior to time k

• transmitter sends v((k)) copies of each packet

this result assumes no 
drops in nacks

• can stabilize any system for any drop probability
• with arbitrarily small increase in the transmission rate
no (completely) free lunch…  E[ x(k)2 ] will be large 

E[ x(k)2 ]

E[ v(k) ]
(transmission rate)

achievable

1

all but one channel are rarely utilized



Optimal “error-correction” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

to minimize

(generalizable to
output-feedback)

state estimation error
(performance)

transmission rate
(communication)

choose v(k) ´ number of copies of x(k) to send at time instant k

average-cost optimal control of a Markov process on Rn 

Optimal “error-correction” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

Theorem: 
• optimal v(k) is generated by a memoryless policy of the form

• optimal policy π∗ can be computed using dynamic programming 
and value-iteration

(generalizable to
output-feedback)

transmitter must construct a state 
estimate to determine optimal v(k)

computationally difficult for large n



Example

send just one packet every time

optimal protocol using 
at most 3 independent channels

(different choices of λ)

E[
x

2 ]

average communication rate

Optimal “simplified” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

to minimize

(generalizable to
output-feedback)

state estimation error
(performance)

transmission rate
(communication)

choose v(k) ´ number of copies of x(k) to send at time instant k

but transmitter must choose v(k) based only on # of consecutive drops (from nacks)



Optimal “simplified” protocols

n-dim. processcert. equiv. controller

shared
network

white noise
disturbance

drops packets (iid)
with probability p

Theorem: 
• optimal v(k) is generated by a memoryless policy of the form

• optimal policy π∗ can be computed using dynamic programming 
and value-iteration

(generalizable to
output-feedback)

transmitter only needs to keep track of
(k) ´  # of consecutive drops (from nacks)

computationally much easier
(optimization on countable-state 
MDP with size independent of n)

Example

send just one packet every time

simplified protocol using 
at most 3 independent channels

(different choices of λ)

optimal protocol using 
at most 3 independent channels

(different choices of λ)

E[
x

2 ]

average communication rate



Example

send just one packet every time

simplified protocol using 
at most 3 independent channels

(different choices of λ)

optimal protocol using 
at most 3 independent channels

(different choices of λ)

stochastic protocol using 
at most 3 independent channels

(different choices of λ)

E[
x

2 ]

average communication rate
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This lecture: Co-design of network protocols and control algorithms
1. Characterize key parameters that determine the stability/performance of 

a networked controls system
2. Construct protocols that directly take these parameters into 

considerations

Illustrative examples: 
• data link layer:� medium access control
• transport layer:� error correction (& flow control)
• network layer:� routing



Communication nodes

Process

Estimator

Estimation of a process across a network

Multi-hop/multi-path communication between sensor and estimator

Sensing node

Problem formulation

Packet Erasure Model

1. Enough quantization bits

2. No corruption of data

Received with
out e

rro
r

Packet d
ropped

Communication Channel Model



Process

Sensor

Estimator

Minimize, at every time step, the mean squared cost 

• Packet Erasure Channels

• Network with Arbitrary Topology

Minimum Mean Squared Error 
Estimator

System Model

Process Sensor Network Estimator

If the sensor (and every intermediate node) simply transmits measurements, 
the network is equivalent to a single channel with  

equivalent drop probability = 1 – “reliability of the network”

Can we do better ?

For a series combination of n links each with drop probability p, the ‘equivalent’ drop 
probability is

For n = 5, p = 5%, the ‘equivalent’ drop probability is 23%. 

The Network Case



•Theme: Use (limited) memory and processing power at the intermediate 
nodes to obtain better performance.

• If the nodes follow a recursive algorithm, optimal performance is achieved.

•Stability conditions can be checked simply.

Process Sensor Network Estimator

In This Lecture

Telos wireless network modules from Moteiv

1. Microcontroller: 8 MHz Texas Instrument MSP430
2. Program memory: 62K
3. Flash memory: 256K

MVWT-II vehicles at Caltech

1. Microcontroller: 206 MHz Zaurus PDA
2. Flash memory: 16M

Power grid

Ample processing and memory capabilities 

Constraint: memory and computation required should not increase with time.

Is it Feasible?



Node i
ReceiverSensor

Every node keeps 

1. an estimate of current state value based on all data it has received so far & 

2. a time-stamp of the latest measurement used to construct this estimate.

Kalman filter at the sensor.

Switched linear filter at all other nodes.

• Compare the time-stamps of the estimates received along incoming edges with 
the one in memory.

• Choose the estimate with the most recent time-stamp.

• Update estimate and transmit it along outgoing edges.

Information Processing Algorithm

•Same performance as transmitting all previous measurements at every 
time step (“optimality”).

•Constant amount of transmission and memory required.

•Each received packet ‘washes away’ the effect of all previous drops.

Choose the estimate that 
uses latest measurement

Update and transmit it along 
outgoing edges

 Optimal for arbitrary network (may even have cycles).
 No assumption needed about the packet dropping process.

Properties of the Algorithm



Necessary and sufficient conditions for boundedness of the error covariance 
       (mean-square stability)
Parallel Networks:

Series Networks:

For a series combination of n links each with same drop probability p, the condition is

(process)

But if transmitting measurements it would be

(independent drops 
assumed for simplicity)

Special Networks: Stability of Error Covariance

General networks:

Max-cut probability

Arbitrary Network

1. For each cut-set, identify edges that span from the source set to the sink set.

2. Calculate the cut-set probability:

3. Identify the maximum cut-set probability pmax–cut.

Cut-set probability = 

Necessary and sufficient conditions for boundedness of the error covariance 
       (mean-square stability)

General Networks: Stability of Error Covariance



The expected steady state error covariance can be evaluated using a closed 
formula 

Details in Dana et al.  (TAC)

noise cov.

process matrix

network

ideal cov.

General Networks: Performance

Process

Sensor

Network

Estimator

Choose the estimate 
that uses latest 
measurement

Time update and 
transmit along outgoing 
edges

Condition for Stability of Error Covariance

Use (limited) memory and processing power at the intermediate nodes to obtain 
better performance.

• Recursive algorithm for optimal performance identified.

• Necessary and sufficient stability conditions provided.

Summary



Network protocols & Control laws

network view: control view:
application
transport
network
data link
physical

application
transport
network
data link
physical

processcontroller

delay

This lecture: Co-design of network protocols and control algorithms
1. Characterize key parameters that determine the stability/performance of 

a networked controls system
2. Construct protocols that directly take these parameters into 

considerations

Illustrative examples: 
• data link layer:� medium access control
• transport layer:� error correction (& flow control)
• network layer:� routing

END


