

Application Areas

UC SANTA BARBARA en ineeri

Robotic agents free humans from unpleasant, dangerous, and/or repetitive tasks in which human performance would degrade over time due to fatigue

Efficiency and safety in cars depend on a network of hundreds of ECUs (power train, ABS, stability control, speed control, transmission, …)

Buildings consume 72% of electricity, 40% of all energy, and produce close to 50% of U.S. carbon emissions

Digital Control Systems

UC SANTA BARBARA Ο engineering

UC SANTA BARBARA Non-uniform Sampling/Delays engineering Uniform sampling cannot be guaranteed (packet drops, clock synchronization, …) Different samples may experience different delays Difficult to decouple continuous plant from discrete events (sampling, drops, …) Rear-right
sensor/actuator Front-right
Insor/actuator Controller Node 5 $Node 1$ Node 7 Network $Node 4$ Node 2 Node 3 \ddot{Q} Front-left Heave position
sensor Roll and pitch
angle sensor Rear-left sensor/actuator sensor/actuator \mathbf{t}_1 \mathbf{t}_2 ……… $y(t)$ $\frac{u(t)}{H}$ Plant $\frac{y(t)}{S}$ $s_1 \qquad \quad s_2 \quad s_3$ time s_1 s_2 s_3 s_4 variable **particle** packet drops **Network packet drops** delays **Controller** u_k $\sqrt{\frac{3}{k}}$ y_k ……… ……… s_1 s₃ s₄ s₃ s₄

Course Overview

Lecture #1: Modeling Framework − Hybrid Dynamical Systems (Deterministic, Stochastic, Impulsive)

Lecture #2: Analysis of Stochastic Hybrid Systems (Generator, Lyapunov-based Methods)

(extra material): NCS Protocol Design (Medium Access, Transport, Routing)

> Lecture #1 Modeling Framework: Hybrid Dynamical Systems

Lecture #1 Outline

- Deterministic Hybrid Systems (DHSs)
- **Stochastic Hybrid Systems (SHSs)**
- \odot Simulation of SHSs
- **SHSs Driven by Renewal Processes**

Main references: Davis, "Markov Models and Optimization" Chapman & Hall,1993 Cassandras, Lygeros, "SHSs" CRC Press 2007 Hespanha, "A Model for SHSs with Application ..." Nonlinear Analysis 2005.

UC SANTA BARBARA enaineering

Deterministic Hybrid Systems

UC SANTA BARBARA enaineerin

congestion window (internal state of controller)

and back)

$$
r(t) = \frac{w(t)}{RTT(t)}
$$
 round-trip-time (from server to client

• initially w is set to 1

• until first packet is dropped, w increases exponentially fast (slow-start)

 $\mathcal{L}(1)$

• after first packet is dropped, w increases linearly (congestion-avoidance)

• each time a drop occurs, w is divided by 2 (multiplicative decrease)

Example #2: TCP Congestion Control

UC SANTA BARBARA engineeri

• each time a drop occurs, w is divided by 2 (multiplicative decrease)

Example #2: TCP Congestion Control

UC SANTA BARBARA engineering

Stochastic Hybrid Systems

UC SANTA BARBARA enaineering

Example #2.1: TCP Congestion Control

UC SANTA BARBARA

UC SANTA BARBARA enaineerind

- $r(t) = \frac{w(t)}{RTT(t)}$
- initially w is set to 1
- \bullet until first packet is dropped, w increases exponentially fast (slow-start)
- after first packet is dropped, w increases linearly (congestion-avoidance)
- each time a drop occurs, w is divided by 2 (multiplicative decrease)

Lecture #1 Outline

- Θ Deterministic Impulsive Systems (DISs)
- **O** Deterministic Hybrid Systems (DHSs)
- \bullet Stochastic Hybrid Systems (SHSs)
- **9** Simulation of SHSs
- **SHSs Driven by Renewal Processes**

Numerical Simulation of SISs

 $\hat{x} = f(x)$

 $\lambda(x)dt$ \qquad $x \mapsto \phi(x)$

UC SANTA BARBARA engineering

1. Initialize state:

here we take *x0* as a given parameter

 $x = 0$

$$
x(t_0) = x_0 \quad k
$$

2. Draw a unit-mean exponential random variable

$$
E \sim \exp(1)
$$

3. Solve ODE

$$
\dot{x} = f(x) \quad x(t_k) = x_k \quad t \ge t_k
$$

until time t_{k+1} for which

$$
\int_{t_k}^{t_{k+1}} \lambda(x(t))dt \ge E
$$

4. Apply the corresponding reset map

$$
x(t_{k+1}) = x_{k+1} := \phi(x^-(t_{k+1}))
$$

set $k = k + 1$ and go to 2.

UC SANTA BARBARA Numerical Simulation of SISs enaineerina here we take *x0* as a given parameter 1. Initialize state: $x(t_0) = x_0$ $k = 0$ $\lambda(x)dt$ \qquad $x \mapsto \phi(x)$ 2. Draw a unit-mean exponential random $\dot{x} = f(x)$ variable $E \sim \exp(1)$ 3. Solve ODE $\dot{x} = f(x)$ $x(t_k) = x_k$ $t > t_k$ until time t_{k+1} for which $\int_0^t k+1$ $\lambda(x(t))dt \ge E$ This algorithm is "exact" modulo: errors in extracting realizations Apply the corresponding reset map of exponential random variables $x(t_{k+1}) = x_{k+1} := \phi(x^{-1}(t_{k+1}))$ numerical errors in solving ODE numerical errors in "zeroset $k = k + 1$ and go to 2. crossing" detection *overall very accurate...*

Stochastic Impulsive Systems

UC SANTA BARBARA engineering

UC SANTA BARBARA engineering

Numerical Simulation of SISs

1. Initialize state:

$$
x(t_0) = x_0 \quad k = 0
$$

2. Draw one independent exponential random variable (unit mean) per transition

$$
E_1, E_2, E_3 \sim \exp(1)
$$

3. Solve ODE

$$
\dot{x} = f(x) \quad x(t_k) = x_k \quad t \ge t_k
$$

until time t_{k+1} for which

$$
\int_{t_k}^{t_{k+1}} \lambda_{\ell}(x(t))dt \ge E_{\ell}
$$

for some transition *ℓ** .

4. Apply the corresponding reset map *ℓ**

$$
x(t_{k+1}) = x_{k+1} := \phi_{\ell^*}(x^-(t_{k+1}))
$$

set
$$
k = k + 1
$$
 and go to 2.

Numerical Simulation of SISs

 $x \mapsto \phi_1(x)$ $\lambda_1(x)dt$ $\lambda_2(x)dt$ $\dot{x} = f(x)$ $\lambda_3(x)dt$

 $x \mapsto \phi_3(x)$

 $x \mapsto \phi_2(x)$

1. Initialize state:

$$
x(t_0) = x_0 \quad k = 0
$$

2. Draw one independent exponential random variable (unit mean) per transition

$$
E_1, E_2, E_3 \sim \exp(1)
$$

3. Solve ODE

$$
\begin{cases}\n\dot{x} = f(x) & x(t_k) = x_k \\
\dot{m}_1 = \lambda_1(x) & m_1(t_k) = 0 \\
\dot{m}_2 = \lambda_2(x) & m_2(t_k) = 0\n\end{cases} \quad t \ge t_k
$$
\n
$$
\vdots \qquad \vdots
$$

until time t_{k+1} for which

$$
m_{\ell}(t_{k+1}) \ge E_{\ell}
$$

for some transition *ℓ** .

4. Apply the corresponding reset map *ℓ**

$$
x(t_{k+1}) = x_{k+1} := \phi_{\ell}(x^{-}(t_{k+1}))
$$

set
$$
k = k + 1
$$
 and go to 2.

Numerical Simulation of SISs

UC SANTA BARBARA enaineerinc

1. Initialize state:

$$
x(t_0) = x_0 \quad k = 0
$$

2. Draw one independent exponential random variable (unit mean) per transition

$$
E_1, E_2, E_3 \sim \exp(1)
$$

3. Solve ODE

$$
\begin{cases}\n\dot{x} = f(x) & x(t_k) = x_k \\
\dot{m}_1 = \lambda_1(x) & m_1(t_k) = 0 \\
\dot{m}_2 = \lambda_2(x) & m_2(t_k) = 0\n\end{cases} \quad t \ge t_k
$$
\n
$$
\vdots \qquad \vdots
$$

until time t_{k+1} for which .

.

$$
m_{\ell}(t_{k+1}) \ge E_{\ell}
$$

.

for some transition *ℓ** .

4. Apply the corresponding reset map *ℓ**

$$
x(t_{k+1}) = x_{k+1} := \phi_{\ell}(x^-(t_{k+1}))
$$

set $k = k + 1$ and go to 2.

 $x \mapsto \phi_1(x)$ $\lambda_1(x)dt$ $\lambda_2(x)dt$ $\dot{x} = f(x)$ $\lambda_3(x)dt$

 $x \mapsto \phi_3(x)$ $x \mapsto \phi_2(x)$

Under appropriate (mild) assumptions this procedure results in a (strong) Markov Process However… *x*(*t*)

UC SANTA BARBARA engineerin

back to Stochastic Hybrid Systems ...

UC SANTA BARBARA engineerin

UC SANTA BARBARA Generalizations engineerin $x \mapsto \varphi(x)$ $\lambda(x)dt$ $q=2$ $q=1$ $\dot{x} = f(2, x)$ $\dot{x} = f(1, x)$ 2. *Stochastic resets* can be obtained by considering multiple intensities/reset-maps $x \mapsto \varphi_1(x)$ $p\lambda(x)dt$ $\int \varphi_1(x)$ w.p. *p* $q=1$ $x \mapsto$ $\dot{x} = f(1, x)$ $\varphi_2(x)$ w.p. $1 - p$ $x \mapsto \varphi_2(x)$ $(1-p)\lambda(x)dt$ One can further generalize this to resets governed by a continuous distribution $x \sim \mu(q, x, dx)$

UC SANTA BARBARA engineering

Lecture #1 Outline

- **Q** Deterministic Impulsive Systems (DISs)
- **O** Deterministic Hybrid Systems (DHSs)
- \bullet Stochastic Hybrid Systems (SHSs)
- **9** Simulation of SHSs
- **•** Time-triggered SHSs

Time-triggered SIS

$$
t_k \longrightarrow x \mapsto \phi(x)
$$

$$
\begin{pmatrix} x \mapsto \phi(x) \\ x = f(x) \end{pmatrix}
$$

Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ? Suppose $t_{k+1} - t_k \sim$ i.i.d., with cumulative distribution function $F(\cdot)$

UC SANTA BARBARA enaineerino

Time-triggered SIS

UC SANTA BARBARA

UC SANTA BARBARA enaineerin

Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ? Suppose $t_{k+1} - t_k \sim$ i.i.d., with cumulative distribution function $F(\cdot)$

Recall:

$$
\begin{aligned}\n&\text{P}\left(\text{jump in } (t, t+dt] \mid t_k, x(t_k), \text{no jump in } [t_k, t]\right) \xrightarrow{dt \to 0} \lambda_{\ell}(x(t))dt \\
&\text{P}\left(t < t_{k+1} \le t + dt \mid t_k, x(t_k), t_{k+1} > t\right) \\
&= \frac{F(t+dt-t_k) - F(t-t_k)}{1 - F(t-t_k)} \xrightarrow{dt \to 0} \frac{F'(t-t_k)}{1 - F(t-t_k)} dt\n\end{aligned}
$$

Time-triggered SIS

Can we pick an intensity $\lambda(\cdot)$ to obtain the desired distribution for the t_k ? Suppose $t_{k+1} - t_k \sim$ i.i.d., with cumulative distribution function $F(\cdot)$

Recall:

$$
\begin{aligned}\n&\text{P}\left(\text{jump in } (t, t+dt] \mid t_k, x(t_k), \text{no jump in } [t_k, t]\right) \xrightarrow{dt \to 0} \lambda_\ell(x(t))dt \\
&\text{P}\left(t < t_{k+1} \le t+dt \mid t_k, x(t_k), t_{k+1} > t\right) \qquad \text{hazard rate} \\
&= \frac{F(t+dt-t_k) - F(t-t_k)}{1 - F(t-t_k)} \xrightarrow{dt \to 0} \frac{F'(t-t_k)}{1 - F(t-t_k)} dt\n\end{aligned}
$$

 $1 - F(t - t_k)$

 $1 - F(t - t_k)$

Lecture #2 Outline

- Infinitesimal Generator and Dynkin's Formula
- Lyapunov-based Analysis
- Stability of SHSs Driven by Renewal Processes

Main references: Davis, "Markov Models and Optimization" Chapman & Hall,1993 Kushner, "Stochastic Stability and Control" Academic Press,1967 Antunes et al., ACC'09, CDC'09, ACC'10, CDC'10

ODE – Lie Derivative	UCSANTA BARBARA
Given scalar-valued function $V : \mathbb{R}^n \to \mathbb{R}$	
$\frac{dV(x(t))}{dt} = \frac{\partial V(x(t))}{\partial x} f(x(t))$	
derivative along solution to ODE to ODE	$L_f V$
Basis of "Lyapunov" formal arguments to establish boundedness and stability...	
E.g., picking $V(x) := x ^2$	
$\frac{dV(x(t))}{dt} = \frac{\partial V}{\partial x} f(x) \leq 0 \implies V(x(t)) = x(t) ^2 \leq x(0) ^2$	
$ x ^2$ remains bounded along trajectories!	

ODE − Lie Derivative

 λ

$$
\dot{x} = f(x) \qquad x \in \mathbb{R}^n
$$

Along solutions to ODE

$$
x(t + dt) = x(t) + \underbrace{\dot{x}(t)}_{f(x(t))} dt + O(dt^2)
$$

Given scalar-valued function $V : \mathbb{R}^n \to \mathbb{R}$

$$
V(x(t+dt)) = V(x(t) + f(x(t))dt + O(dt^2)
$$

= $V(x(t)) + \frac{\partial V(x(t+dt))}{\partial x} f(x(t))dt + O(dt^2)$

$$
\frac{dV(x(t))}{dt} = \lim_{dt \to 0} \frac{V(x(t+dt)) - V(x(t))}{dt} = \frac{\partial V(x(t+dt))}{\partial x} f(x(t))
$$

Stochastic Impulsive System

$$
\left(\begin{array}{c}\n\hat{x} = f(x) \\
\hat{x} \in \mathbb{R}^n\n\end{array}\right)_{x \mapsto \phi(x)}^{\lambda(x)dt} \qquad \qquad \overrightarrow{t \qquad t_k \qquad t+dt}
$$

Along a sample path to the SIS

$$
x(t + dt) = \begin{cases} x(t) + f(x(t))dt + O(dt^2) & \text{no jumps in } (t, dt] \\ \phi(x(t)) + O(dt) & \text{one jump in } (t, dt] \\ ? ? ? & \text{more than one jump } ... \end{cases}
$$

Given scalar-valued function $V : \mathbb{R}^n \to \mathbb{R}$

$$
V(x(t+dt)) = \begin{cases} V\left(x(t)\right) + \frac{\partial V(x(t))}{\partial x} f(x(t)) dt + O(dt^2) & \text{no jumps in } (t, dt] \\ V\left(\phi(x(t))\right) + O(dt) & \text{one jump in } (t, dt] \\ ? ? ? & \text{more than one jump ...} \end{cases}
$$

Stochastic Impulsive System

EN UC SANTA BARBARA

$$
\begin{aligned}\n\begin{pmatrix}\n\dot{x} = f(x) \\
x \in \mathbb{R}^n\n\end{pmatrix}\n\begin{pmatrix}\n\lambda(x)dt & \frac{1}{t} & \frac{1}{t} & \frac{1}{t}dt \\
\frac{1}{t} & \frac{1}{t} & \frac{1}{t}dt\n\end{pmatrix} \\
V(x(t+dt)) &= \begin{cases}\nV(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt + O(dt^2) & \text{no jumps in } (t, dt] \\
V(x(t+dt)) & \text{one jump in } (t, dt] \\
\frac{1}{t} & \text{more than one jump} \dots \\
V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt + O(dt^2) & \text{w.p. } 1 - \lambda(x(t))dt \\
V(\phi(x(t)) + O(dt) & \text{w.p. } \lambda(x(t))dt \\
\frac{1}{t} & \text{w.p. } O(dt^2)\n\end{cases}\n\end{aligned}
$$
\nGiven $x(t)$ \n
$$
E\left[V(x(t+dt)) | x(t)\right] = \left(V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt + O(dt^2)\right)\left(1 - \lambda(x(t))dt\right)
$$

 $+\,V\left(\phi(x(t))\right)\lambda(x(t))dt+O(dt^2)$

Stochastic Impulsive System
\n
$$
\begin{aligned}\n\begin{aligned}\n\hat{x} &= f(x) \\
x &= \mathbb{R}^n\n\end{aligned}\n\end{aligned}\n\begin{aligned}\n\begin{aligned}\n\lambda(x)dt \\
x &\mapsto \phi(x)\n\end{aligned}\n\end{aligned}
$$
\n
$$
V(x(t+dt)) = \begin{cases}\nV(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt + O(dt^2) &\text{no jumps in } (t, dt] \\
V(x(t+dt)) &= \begin{cases}\nV(x(t)) + O(dt) &\text{one jump in } (t, dt] \\
??? &\text{more than one jump } ... \\
V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt + O(dt^2) &\text{w.p. } 1 - \lambda(x(t))dt \\
??? &\text{Given } x(t)\n\end{cases}
$$
\n
$$
E[V(x(t+dt)) | x(t)] = V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt - V(x(t))\lambda(x(t))dt + V(\phi(x(t)))\lambda(x(t))dt + V(\phi(x(t)))\lambda(x(t))dt + O(dt^2)\n\end{aligned}
$$

Stochastic Impulsive System

$$
\begin{aligned}\n\left(\frac{\dot{x} = f(x)}{x \in \mathbb{R}^n}\right) &\lambda(x)dt \\
\frac{\lambda(x)dt}{x \mapsto \phi(x)} \\
\frac{dE\left[V(x(\tau)) \mid x(t)\right]}{d\tau}\Big|_{\tau=t} = \lim_{\text{at}\to 0} \frac{E\left[V(x(t+dt)) - V(x(t)) \mid x(t)\right]}{dt} \\
&= \frac{\partial V(x(t))}{\partial x} f(x(t)) + \left(V\left(\phi(x(t))\right) - V(x(t))\right)\lambda(x(t)) \\
\text{(implicit assumption that terms O(dt2) do not cause trouble...} \\
\text{Given } x(t) \\
\text{E}\left[V(x(t+dt)) \mid x(t)\right] = V(x(t)) + \frac{\partial V(x(t))}{\partial x} f(x(t))dt - V(x(t))\lambda(x(t))dt \\
&+ V\left(\phi(x(t))\right)\lambda(x(t))dt + O(dt^2)\n\end{aligned}
$$

UC SANTA BARBARA

Lecture #2 Outline

- **9** Infinitesimal Generator and Dynkin's Formula
- Lyapunov-based Analysis
- \bullet **Stability of SHSs Driven by Renewal Processes**

Lyapunov Analysis − ODEs

 $\dot{x} = f(x)$ $x \in \mathbb{R}^n$

Given scalar-valued function $V : \mathbb{R}^n \to \mathbb{R}$

$$
\frac{dV(x(t))}{dt} = \frac{\partial V(x(t))}{\partial x} f(x(t))
$$

Suppose
$$
\begin{cases} V(x) \ge 0\\ \frac{\partial V(x)}{\partial x} f(x) \le 0 \end{cases} \forall x
$$

Then $\frac{dV(x(t))}{dt} = \frac{\partial V}{\partial x}$ $f(x) \leq 0 \Rightarrow V(x(t)) \leq V(x_0) \quad \forall t \geq 0$

> zero at zero & monotone increasing

UC SANTA BARBARA engineering

"Squeezing" $V(x)$ between two class-K functions $\alpha_1(\Vert x \Vert) \le V(x) \le \alpha_2(\Vert x \Vert)$

$$
||x(t)|| \leq \alpha_1^{-1} (\alpha_2(||x_0||)) \quad \forall t \geq 0
$$

 $||x(t)||$ can be kept arbitrarily small by making $||x_0||$ small
Lyapunov Analysis − SISs

UC SANTA BARBAR.

Lyapunov Analysis − SISs

$$
\begin{aligned}\n\begin{pmatrix}\n\dot{x} = f(x) \\
x \in \mathbb{R}^n\n\end{pmatrix}\n\begin{pmatrix}\n\lambda(x)dt \\
x \in \mathbb{R}^n\n\end{pmatrix} \\
x \mapsto \phi(x)\n\end{aligned}\n\quad\n\text{Suppose}\n\quad\n\begin{aligned}\n\begin{bmatrix}\nV(x) \ge 0 \\
LV(x) \le 0\n\end{bmatrix} \forall x \\
\lambda(x) \le 0\n\end{aligned}\n\end{aligned}
$$
\n
$$
\text{Pick } T, K > 0 \text{ and define}
$$
\n
$$
\tau^* := \begin{cases}\nT & V(x(t)) < K, \forall t \in [0, T] \\
\text{1st time } V(x(t)) \ge K & \text{otherwise}\n\end{cases}
$$
\n
$$
z^* := \begin{cases}\n0 & V(x(t)) < K, \forall t \in [0, T] \\
1 & \text{otherwise}\n\end{cases}
$$
\n
$$
\text{From Dynkin's formula}
$$
\n
$$
\begin{aligned}\nE\left[V(x(\tau^*))\right] \le E\left[V(x(0))\right] = V(x_0) \\
z^*V(x(\tau^*)) + (1 - z^*)V(x(\tau^*)) \ge z^*K &\text{P}\left(V(x(t)) \text{ ever becomes } \ge K\right)\n\end{aligned}
$$

ES UC SANTA BARBARA

Lyapunov Stability in Probability	Probability	yccsawa BARRAR
$\hat{x} = f(x)$	$\lambda(x)dt$	
$x \in \mathbb{R}^n$	$x \mapsto \phi(x)$	Doob's
Suppose	(Martingale)	
$\left\{V(x) \ge 0 \quad \forall x \implies P\left(V(x(t)) \text{ ever becomes } \ge K\right) \le \frac{V(x_0)}{K}\right\}$		
Suppose	(Martingale)	
$\left\{V(x) \le 0 \quad \forall x \implies P\left(V(x(t)) \text{ ever becomes } \ge K\right) \le \frac{V(x_0)}{K}\right\}$		
2ero at zero & monotone increasing		
"Squeezing" $V(x)$ between two class-K functions	$\alpha_1(x) \le V(x) \le \alpha_2(x)$	
$P\left(\ x(t)\ \text{ ever becomes } \ge M\right) \le \frac{\alpha_2(x_0)}{\alpha_1(M)}$	Lyapunov stability	
Probability of $\ x(t)\ $ exceeding any given bound M , can be made arbitrarily small by making $\ x_0\ $ small		

Ensemble Notions of Stability

$$
\widehat{x = f(x)} \sum_{x \in \mathbb{R}^n} \lambda(x) dt
$$

$$
\frac{d}{dt} \mathbf{E}\left[V(x(t))\right] = E\Big[(LV)(x(t))\Big]
$$

CONTA BARBARA

Suppose
$$
\begin{cases} V(x) \ge 0 \\ LV(x) \le -W(x) \end{cases}
$$

Integrating Dynkin's formula

$$
E\left[V(x(T))\right] - V(x_0) \le -\int_0^T E\left[W(x(t))\right] dt \quad \forall T > 0
$$

\n
$$
\ge 0 \quad \Rightarrow \quad \int_0^T E\left[W(x(t))\right] dt \le V(x_0)
$$

\n
$$
\int_0^\infty E\left[W(x(t))\right] dt < \infty
$$
 stochastic stability
\n(mean square if
\n
$$
W(x)=\|x\|^2
$$
)

Ensemble Notions of Stability		Vcsanra barara
$\begin{aligned}\n \hat{x} &= f(x) \\ x &\in \mathbb{R}^n\n \end{aligned}$ \n	$\frac{d}{dt} \mathbf{E}\left[V(x(t))\right] = E\left[(LV)(x(t))\right]$ \n	
\n Suppose \n $\begin{aligned}\n \begin{cases}\n V(x) &\geq W(x) \geq 0 \\ LV(x) &\leq -\mu V + c\n \end{cases}$ \n		
From Dynkin's formula\n		
$\frac{d}{dt} \mathbf{E}\left[V(x(t))\right] \leq -\mu E\left[V(x(t))\right] + c$ \n		
$\Rightarrow \mathbf{E}\left[W(x(t))\right] \leq \mathbf{E}\left[V(x(t))\right] \leq e^{-\mu t}V(x_0) + \frac{c}{\mu}$ \n		
exponential stability (mean square if $W(x)=\vert x \vert\vert^2)$)\n \end{aligned}\n		

UC SANTA BARBARA Lyapunov-based stability analysis engineering error dynamics

in remote estimation $\lambda(e)dt$
 $d_{\text{E}} [\text{tr}(e(t))]$ $E[(\text{tr}(e(t))]$ *d* $\frac{d}{dt} \mathbf{E}\left[V(e(t))\right] = E\left[(LV)(e(t))\right]$ $\dot{e} = Ae + B\dot{w}$ $\frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ $(LV)(e) := \frac{\partial V}{\partial e}Ae + \lambda(e)\Big(V(0) - V(e)\Big) + \frac{1}{2}$ $e := x - \hat{x}$ $e \mapsto$ 2nd moment of the error: \Rightarrow $(LV)(e) = e' \left[\left(A - \frac{\lambda(e)}{2} \right) \right]$ I ^{\int} P + $P\left(A - \frac{\lambda(e)}{2}\right)$ $V(e) = e'Pe \Rightarrow (LV)(e) = e' \left[\left(A - \frac{\lambda(e)}{2}I \right)'P + P\left(A - \frac{\lambda(e)}{2}I \right) \right]e + \text{trace } B'PB$ For constant rate: $\lambda(e) = \gamma$ $A - \frac{\gamma}{2}I$ Hurwitz $\Rightarrow \exists \mu > 0, P \ge I : \left(A - \frac{\gamma}{2}\right)$ $I\bigg)'P+P\Big(A-\frac{\gamma}{2}\Big)$ I ^{$\geq -\mu P$}

Lyapunov-based stability analysis

For constant rate: $\lambda(e) = \gamma$ 2nd moment of the error: error dynamics

in remote estimation $\lambda(e)dt$
 $d_{\text{E}} [\text{tr}(e(t))]$ $E[(\text{tr}(e(t))]$ $\dot{e} = Ae + B\dot{w}$ $e \mapsto 0$ $(LV)(e) := \frac{\partial V}{\partial e}Ae + \lambda(e)\Big(V(0) - V(e)\Big) + \frac{1}{2}$ $\frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ *d* $\frac{d}{dt} \mathbf{E}\left[V(e(t))\right] = E\left[(LV)(e(t))\right]$ \Rightarrow $(LV)(e) = e' \left[\left(A - \frac{\lambda(e)}{2} \right) \right]$ I ^{\int} P + $P\left(A - \frac{\lambda(e)}{2}\right)$ $V(e) = e'Pe \Rightarrow (LV)(e) = e' \left[\left(A - \frac{\lambda(e)}{2}I \right)'P + P\left(A - \frac{\lambda(e)}{2}I \right) \right]e + \text{trace } B'PB$ $A - \frac{\gamma}{2}I$ Hurwitz $\Rightarrow \exists \mu > 0, P \ge I : \left(A - \frac{\gamma}{2}\right)$ $I\bigg)'P+P\Big(A-\frac{\gamma}{2}\Big)$ I ^{$\geq -\mu P$} $\int V(e) \geq ||e||^2 \geq 0$ $LV(e) \le ||e|| \le 0$
 $LV(e) \le -\mu V + \text{trace } B'PB$ \Rightarrow $E [||e(t)||^2] \le e^{-\mu t} e'_0 Pe_0 +$ $\text{trace } B'PB$ *µ*

UC SANTA BARBARA

Lyapunov-based stability analysis

UC SANTA BARBARA

Lyapunov-based stability analysis

6. E[$\parallel e \parallel^m \rfloor$ bounded $\forall m$

UC SANTA BARBARA enaineerinc

less communication than with a constant rate or periodic transmissions…

For constant rate: $\lambda(e) = \gamma$ (exp. distributed inter-jump times) 1. E[e] \rightarrow 0 if and only if $\gamma > \Re[\lambda(A)]$ 2. E[$\parallel e \parallel^m \rfloor$ bounded if and only if $\gamma > m \Re[\lambda(A)]$ For radially unbounded rate: $\lambda(e)$ (reactive transmissions) 5. $E[e] \rightarrow 0$ (always) getting more moments bounded requires higher comm. rates Moreover, one can achieve the same $E[\text{||}e||^2]$ with error dynamics

in remote estimation $\lambda(e)dt$
 $d_{\text{E}} [\text{tr}(e(t))]$ $E[(\text{tr}(e(t))]$ $\dot{e} = Ae + B\dot{w}$ $e \mapsto 0$ $(LV)(e) := \frac{\partial V}{\partial e}Ae + \lambda(e)\Big(V(0) - V(e)\Big) + \frac{1}{2}$ $\frac{1}{2} \operatorname{trace} \left(B' \frac{\partial^2 V}{\partial e^2} B \right)$ *d* $\frac{d}{dt} \mathbf{E}\left[V(e(t))\right] = E\left[(LV)(e(t))\right]$

Lecture #2 Outline

- **9** Infinitesimal Generator and Dynkin's Formula
- Lyapunov-based Analysis
- Stability of SHSs Driven by Renewal Processes

Time-triggered Linear SIS

Time-triggered Linear SIS

$$
t_{k+1} - t_k \sim
$$
 i.i.d., with cumulative distribution function $F(\cdot)$

Theorem:

9
$$
P > 0
$$
, $E_{F(s)} \left[e^{A's} P e^{As} \right] < P$ mean-square stochastic stability

\n**10** k $E_{F(s)}[e^{A's} e^{As}] = \int_0^\infty e^{A's} e^{As} F(ds) < \infty$

\n**21** $P > 0$, $E_{F(s)} \left[e^{A's} P e^{As} \right] < P$ mean-square asymptotic stability

\n**32** k $\lim_{s \to \infty} e^{A's} e^{As} (1 - F(s)) = 0 \Leftrightarrow \lim_{t \to \infty} E[\|x(t)\|^2] = 0$

\n**43** $P > 0$, $E_{F(s)} \left[e^{A's} P e^{As} \right] < P$ mean-square exponential stability

\n**54** k $\lim_{s \to \infty} e^{A's} e^{As} (1 - F(s)) \stackrel{exp. fast}{=} 0 \Leftrightarrow \lim_{t \to \infty} E[\|x(t)\|^2] \stackrel{exp. fast}{=} 0$

Time-triggered Linear SIS	Q		
Q	All stability notions require	$x \mapsto Jx$	
Q	Im the conditions essentially only differ on the requirements	$x \mapsto Jx$	
Q	Im the tail of distribution	$1 - F(s) = P(t_{k+1} - t_k > s)$	
Choorem:			
Q	$P > 0$, $E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)}[e^{A's}Pe^{As}] < P$	$E_{F(s)}[e^{A's}Pe^{As}] < P$
Q	$P > 0$, $E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [e^{A's}Pe^{As}] < P$	
Q	$P > 0$, $E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [e^{A's}Pe^{As}] < P$	
Q	$P > 0$, $E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [f(x(t) ^2] = 0$	
Q	$P > 0$, $E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [e^{A's}Pe^{As}] < P$	
Q	$E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [f(x(t) ^2]^{exp{-\text{fast}}]$	
Q	$E_{F(s)} [e^{A's}Pe^{As}] < P$	$E_{F(s)} [f(x(t) ^2]^{exp{-\text{fast}}]$	

Time-triggered Linear SIS

 $t_{k+1} - t_k \sim$ i.i.d., with cumulative distribution function $F(\cdot)$

 $\hat{\mathbb{I}}$

Theorem:

system is mean exponentially stable, i.e., $E[\Vert x(t)\Vert^2] \le ce^{-\alpha t} \Vert x(0)\Vert^2$, $\forall t \ge 0$

UC SANTA BARBARA engineering

 $\exists P(\tau)$ such that defining $V(x,\tau) := x'P(\tau)x$

Lyapunov-like function quadratic on x for fixed τ

$$
\begin{cases} c_1 I \le P(\tau) \le c_2 I & \Rightarrow \quad V \text{ is positive definite} \\ (LV)(x,\tau) \le -\epsilon V(x,\tau) & \Rightarrow \quad \frac{\mathrm{d}}{\mathrm{d}t} \mathrm{E}[V(x,\tau)] \le -\epsilon \mathrm{E}[V(x,\tau)] \end{cases}
$$

(essentially a converse Lyapunov stability result)

network view: $\qquad \qquad \text{control view:}$

This lecture: *Co-design of network protocols and control algorithms*

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Digital Control Systems

Digital control systems usually exhibit uniform sampling intervals and delays

UC SANTA BARBARA engineering

Non-uniform Sampling/Delays

Uniform sampling cannot be guaranteed (packet drops, clock synchronization, …)

UC SANTA BARBARA

ineerin

Ο

- Different samples may experience different delays
- Difficult to decouple continuous plant from discrete events (sampling, drops, …)

Systems With Delays

UC SANTA BARBARA enaineerin

Feedback loop with fixed delay

$$
\frac{dx(t)}{dt} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau)
$$
\n(fixed) delay in measuring $x(t)$

\nFeedback loop with variable delay

\n
$$
\frac{dx(t)}{dt} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau(t))
$$

time-varying delay

UC SANTA BARBARA Classical Analysis engineering Feedback loop with fixed delay $\frac{dx(t)}{dt} = Ax(t) + Bu(t)$ $u(t) = Kx(t - \tau)$ $sX(s) = (A + BKe^{-\tau s})X(s)$
time domain time domain time domain time domain time domain (Laplace transform) poles of the system $\equiv \{s \in \mathbb{C} : \det(sI - (A + BK e^{-\tau s})) = 0\}$ stability \Leftrightarrow poles with negative real part (algebraic condition!) Feedback loop with variable delayfrequency domain analysis $\frac{dx(t)}{dt} = Ax(t) + Bu(t)$ $u(t) = Kx(t - \tau(t))$ does not lead to simple algebraic conditions! time-varying delay

Classical Analysis

UC SANTA BARBARA enaineerin

UC SANTA BARBARA enaineerinc

Lyapunov-based Analysis

Feedback loop with variable delay

$$
\frac{dx(t)}{dt} = Ax(t) + Bu(t) \quad u(t) = Kx(t - \tau(t))
$$

time-varying delay

Lyapunov-based analysis

$$
V(x) := \|x\|^2 \quad \frac{\mathrm{d}V(x)}{\mathrm{d}t} = \frac{\partial V(x)}{\partial x} \frac{\mathrm{d}x(t)}{\mathrm{d}t} \dots < 0 \quad \Rightarrow \text{stability!}
$$

- this "simplest" Lyapunov function is unlikely to "work," but ...
- one can use numerical optimization techniques to find appropriate functions (actually functionals)
- stability conditions appear as feasibility problems that can be solved numerically very efficiently
- to apply these methods we need to find appropriate model for NCSs with delays…

Delay Impulsive Systems

Single-channel NCS k -th sampling time $\mathcal{L}(s_k)$ $\dot{x} = Ax + Bu$ H \overline{x} delay τ_k s_k $s_{k+1} s_{k+2}$ k -th update time $t_k := s_k + \tau_k$ $x(s_k)$ $x(s_{k+1})$ variable delay t_k $\begin{aligned} \begin{bmatrix} \dot{z} \end{bmatrix} & = \begin{bmatrix} 0 & -\infty \\ 0 & \end{bmatrix}, & t \neq t_k, \forall k \in \mathbb{N} \\ \begin{bmatrix} x(t_k) \\ z(t_k) \end{bmatrix} & = \begin{bmatrix} x^-(t_k) \\ x(t_k - \tau_k) \end{bmatrix}, & t = t_k, \forall k \in \mathbb{N} \end{aligned}$ $\begin{bmatrix} \dot{x} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} Ax + Bz \\ 0 \end{bmatrix},$ deterministic delayed impulsive system (time driven) $x^{-}(t) := \lim_{\tau \uparrow t} x(\tau)$

UC SANTA BARBARA engineerir

UC SANTA BARBARA engineering

Stability of Delay Impulsive Systems

Consider delay impulsive system

$$
\begin{aligned}\n\dot{x} &= f_k(x, t), & t \neq t_k, \forall k \in \mathbb{N}, \\
x(t_{k+1}) &= g_k(x^-(t_{k+1}), x(t_{k+1} - \tau_k)) & t &= t_k, \forall k \in \mathbb{N}.\n\end{aligned}
$$

System is GUES if there exists a Lyapunov functional

$$
V:C\big([-r,0],\mathbb{R}^n)\times\mathbb{R}^+\to\mathbb{R}^+
$$

such that

state x truncated to the last r time units

(a)
$$
d_1|\phi(0)|^b \le V(\phi, t) \le d_2|\phi(0)|^b + \bar{d}_2 \int_{t-r}^t |\phi(s)|^b ds \quad \forall \phi \in C([-r, 0]), t \in \mathbb{R}^+
$$

\n(b) $\frac{dV(x_t, t)}{dt} \le -d_3|x(t)|^b$
\n(c) $V(x_{t_k}, t_k) \le \lim_{t \uparrow t_k} V(x_t, t)$
\n $t \ne t_k, \forall k \in \mathbb{N}$
\n $t = t_k, \forall k \in \mathbb{N}$
\nfor $d_1, d_2, \bar{d}_2, d_3, b > 0$,
\n $t = t_k, \forall k \in \mathbb{N}$
\n $t = t_k, \forall k \in \mathbb{N}$
\n $t = t_k, \forall k \in \mathbb{N}$

 Extended version of Lyapunov-Krasovskii Theorem for delayed systems with jumps. Lead to LMIs for linear systems

Network protocols & Control laws

network view: $\qquad \qquad \text{control view:}$

This lecture: *Co-design of network protocols and control algorithms*

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Transport layer protocols

Most common (general purpose) protocols:

UDP

• no attempt at error correction

• no attempt to control data rate

TCP

- error correction
	- º all packets sent should be acknowledged by receiver
	- º lack of acknowledgement of packet *n* leads to retransmission of same packet after packet $n + 3$ (triple duplicate ack mechanism)

• congestion control

^o packet drops are taken as a sign of con**dided delayed retransmissions** rease

delayed retransmissions are essentially useless; too much overhead in ack every packet

UC SANTA BARBARA enameerin

high drop rates can lead to poor performance and eventually instability

Optimal "simplified" protocols

UC SANTA BARBARA enaineerin

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction (& flow control)
- network layer: routing

Problem formulation

UC SANTA BARBARA engineerii

Constraint: memory and computation required should not increase with time.

network view: control view:

This lecture: *Co-design of network protocols and control algorithms*

- 1. Characterize *key parameters* that determine the stability/performance of a networked controls system
- 2. Construct *protocols* that directly take these parameters into considerations

Illustrative examples:

- data link layer: medium access control
- transport layer: error correction ($&$ flow control)
- network layer: routing

